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ABSTRACT 
This paper describes the unsteady force acting on steam turbine 

buckets which is induced by a potential field and a wake. A new 
method is proposed that can separate a potential field interaction 
and a wake interaction from the unsteady viscous flow computation. 
The new method does two computations for one model to get 
inviscid and viscous flow solutions. Then the quantitative effects of 
the factors that influence the unsteady force acting on the turbine 
buckets are clarified.  

The nozzle-bucket axial gap length is adopted for the factor to be 
studied and the proposed method is used to calculate the unsteady 
force of the bucket sections with different bucket heights in the 
same stage. The simple relationships between the nozzle-bucket 
axial gap length and the unsteady force are found to give easy and 
reliable prediction of the force. 
 
INTRODUCTION 

For turbine buckets, resonance by the unsteady force which is 
induced by cascade interaction becomes spoil the safety of the 
buckets. This is known as the NPF (nozzle passing frequency) 
excitation. This excitation frequency is a value in which the number 
of nozzles is multiplied by rotational speed and harmonic contents. 
The unsteady force has complex effects due to a potential field 
interaction and a wake interaction. The potential field interaction is 
an inviscid interaction due to time variation of the pressure field 
and it is induced by time variation of the relative position of a 
nozzle and the buckets. The wake interaction gives the flow field an 
unsteady nature for the boundary layer and vortex, and it also gives 
a wake from the upstream cascade, which causes pressure fluctua-
tion on the surface of the bucket. 

Factors such as the bucket profile and nozzle-bucket axial gap 
length influence the unsteady force. The relationships between 
unsteady force and these factors are very complicated, so a direct 
solution by computational fluid dynamics (CFD) is generally used 
to obtain the unsteady force acting on the turbine buckets. But it is 
difficult to get a quantitative effect of each factor independently 
using CFD, so it is difficult to analyze the unsteady force with the 
factors. The main reason for the latter difficulty is that the unsteady 
force is made up of a potential field interaction and a wake inter-
action. To identify the mechanism of the unsteady force, a scheme 
that can evaluate the effect for each interaction is important. 

Many examples of a direct solution for the unsteady force by 

CFD have been published (see e.g., [1, 2]). Lan et al.[1] carried out 
a 3-dimensional numerical simulation of the unsteady flow across 
the one-and-a-half stage axial turbine with different mass flow 
cases. They clearly saw that the unsteady aerodynamic force on the 
blade was changed at different mass flows from the design case. 
Praisner et al.[2] presented 3-dimensional computational results of 
closely coupled high and low pressure turbines in both co- and 
counter-rotating configurations with a focus on the prediction of the 
unsteady loading for the first blade of the low pressure turbine. The 
peak-to-peak amplitude of the tangential load was varied compared 
to the co-rotating 3-row and 4-row results. Generalization of the 
unsteady force has also been well studied. Kemp and Sears[3] 
applied an analysis scheme of the unsteady force for a no-camber 
thin blade and their work was followed by other studies for com-
pressor cascades, for example [4, 5]. Osborne[4] performed ap-
proximate calculations for the problem of the unsteady aerody-
namic interference between two cascades of 2-dimensional airfoils 
with relative motion in subsonic compressible flow. He found 
closed-form formulas for the forces, for the potential interactions 
(including the rotor vortex-wake interactions) and for the vis-
cous-wake interactions. Naumann and Yeh[5] considered the un-
steady lift of a flat-plate and extended the analysis to cambered 
airfoils with an angle of attack moving through both longitudinal 
and transverse gusts. But Nishiyama and Funazaki[6] made it clear 
that the assumption Kemp and Sears used for their scheme did not 
work for large steady load blades such as turbine buckets.  

There are a few reports on the splitting of the potential field in-
teraction and the wake interaction. Korakianitis[7, 8] showed the 
amplitudes and phases of the unsteady force quantitatively, those of 
the potential field interaction and wake interaction independently, 
and the contribution of both interactions. He surveyed the axial gap 
between the nozzle and bucket and their pitch ratio and showed that 
the amplitude and phase of the unsteady force which was for only 
one interaction changed simply for the factors, but changed com-
plexly for the combined interaction. He also found an optimum 
axial gap where vortical and potential excitation effects were par-
tially cancelled out. Feiereisen et al.[9] used two methods to split 
the measured gusts into vortical and potential components for 
experimental data. The split   theory by Goldstein[10] considered 
inviscid compressible flow and it could be calculated as if the body 
had zero thickness and zero angle of attack. Jocker et al [11] also 
used the split theory for a 2-dimensional subsonic turbine stage 
with extremely large blade loads. They investigated the effects of 
parameters such as the axial gap, stator pitch and stator size. They 
found that when potential and vortical excitations were the same 
magnitude, phase turning of the effects could result in a minimized 
excitation. Hoyningen-Huene and Hermeler[12] presented a nu-
merical 2-dimensional study of the unsteady flow in the first stage 
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of an industrial axial flow gas turbine, especially focusing on the 
influence of axial spacings. They investigated the effects of the 
potential flow interaction and wake-blade interaction for the mag-
nitude and phase of the unsteady force. For design engineers, they 
set the design criterion using only geometrical stage data that helps 
engineers in determining axial gaps by taking into account the 
fluctuation amplitudes of both rotor incidence and static pressure 
fluctuation in the rotor leading edge region. 

But no reports have evaluated quantitative effects for each in-
teraction and no schemes have been presented that can split the 
effects from the unsteady force into the potential field interaction 
and the wake interaction and then can evaluate the individual ef-
fects. The purpose of this paper is to explain the method for gen-
eralization of the unsteady force by splitting, evaluating and com-
bining effects of these two interactions. Results obtained by ap-
plying this method to the steam turbine bucket are also presented.  
 
NOMENCLATURE 
A amplitude [N/m] 
a first coefficient of exponential function [-] 
B1 periodic condition boundary [-] 
B2 connecting boundary [-] 
b second coefficient of exponential function [-] 
C chord length [mm] 
Cw axial chord length [mm] 
d nozzle-bucket axial gap length (between nozzle trailing 

edge and bucket leading edge) [mm] 
F force [N/m] 
FA axial force [N/m] 
FT tangential force [N/m] 
h section height [%] 
i intercept of the phase line[-] 
IP intermediate pressure [-] 
j phase when unsteady force is the maximum [deg] 
k gradient of the phase line[-] 
L tangential length of computational model [mm] 
LE leading edge [-] 
m first coefficient of power function [-] 
N blade number [-] 
n second coefficient of power function [-] 
P pressure [Pa] 
s throat [mm] 
T pitch [mm] 
TE trailing edge [-] 
t time or nozzle passing period [-] 
ta turning angle [deg] 
α outlet angle of nozzle [deg] 
β inlet angle of bucket [deg] 
γ outlet angle of bucket [deg] 
ω angular velocity [rad/s] 
θ phase [deg] 
 
 Subscripts 
b bucket 
mean mean pressure 
n nozzle 
p potential field interaction component 
total inlet total pressure 
w wake interaction component 
 
NUMERICAL APPROACH  
Computational Method 

Reynolds averaged Navier-Stokes equations are solved for an 
unsteady compressible flow field using a finite volume method and 
multi-domain technique. To stabilize the computation, the ap-
proximate Rieman solver proposed by Roe[13] is introduced for the 
convection term calculation. The Adams-Bashforth method of 
second-order accuracy, which is an explicit method, is used for the 
time integration. The ideal gas equation of state is employed to  

  
 
Fig. 1 Description of investigated turbine stage configuration 
 
 
relate pressure and temperature and Sutherland’s equation is in-
troduced to calculate molecular viscosity. In the present analysis, 
the two-equation model of turbulence proposed by Chien[14] is 
used to compute a turbulence effect. To compute the flow field 
shown in Fig.1, boundary conditions are set as follows. Total 
pressure, total temperature and flow direction are specified at the 
inlet boundary of the nozzle flow field and a static pressure is 
specified at the outlet boundary of the bucket flow field. At the 
boundary B1, the periodic condition is introduced. On the blade 
surface, the velocity components are set equal to zero and the 
adiabatic condition is also applied. For the transport equation of 
turbulence, the wall function method proposed by Launder and 
Spalding[15] is introduced to reduce computing time. The last 
boundary is the connecting boundary B2; it is where the data 
transfer is carried out between the nozzle and bucket flow regions 
considering the moving bucket location at each time step of the 
calculation. 

In this study, the linear interpolation technique is employed 
considering a connecting boundary mesh location at each time step. 
Computational models are created which have nozzle inflow parts 
of 0.7Cwn and bucket outflow parts of Cwb. 

The bucket surface pressure obtained by CFD is used to calculate 
the tangential force (FT) and the axial force (FA). In Fig.1, the 
bucket area and the nozzle area are connected by B2, and the line 
from the nozzle trailing edge has the gradient of the nozzle outlet 
angle and the line from the bucket leading edge has the gradient of 
the bucket inlet angle. The positional condition in the figure is 
defined as t=0.0, the basis of the phase of all forces.  
∆Lp and ∆Lw shown in Fig.1 are the tangential distances calcu-

lated as follows. 
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Here, ∆Lp is the moving distance from the position t=0.0 until the 
bucket leading edge is nearest the nozzle trailing edge in the axial 
direction, and ∆Lw is the geometrical distance from the position 
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Table 1 Design point data  
 

Item Unit Value
Rotational Speed (rpm) 3000

Inlet Total Pressure （kPa） 1337

Inlet Total Temperature (K) 695

Outlet Static Pressure （kPa） 1109
  

 
 
Table 2 Test case data 
 

h ta α β γ Cn Cb Tn Tb

(%) (deg) (deg) (deg) (deg) (mm) (mm) (mm) (mm)

1 100 30.0 72.3 -45.6 75.6 115.5 50.0 76.2 38.1

2 46.6 56.2 74.1 -15.5 71.7 105.8 50.0 69.8 34.9

3 0 117.1 75.1 49.4 67.7 92.2 50.0 60.8 30.4

Case
No

 
 
 
t=0.0 until the bucket leading edge arrives at the centre of the wake.  

Computations are carried out for an actual steam turbine stage 
with the conditions as listed in Table 1. Three places in the bucket 
section, the root, near the mid span, and the tip are targeted (see 
Table 2), and cascades are created to get six nozzle-bucket axial gap 
lengths. The axial gap length is varied between 5 % and 40 % of the 
nozzle chord. The ratio of the number of buckets to the number of 
the nozzles, Nb/Nn, which has a large influence on the unsteady 
force (see e.g., [7, 8, 11]), is set to 2 (Nb=2, Nn=1). The computa-
tional model is made by design s/T, so the pitch becomes large 
when h becomes large, and the nozzle chord length becomes large 
in proportion to the ratio of pitch, too. In this study, the bucket 
chord length is fixed at 50 mm so that it does not depend on h. For 
the calculation, the bucket moving speed is set at the speed at which 
the bucket incidence angle is 0 degree for a viscous flow solution. 
Only the first harmonic unsteady force, as the nozzle passing fre-
quency component, is considered, so the amplitude and the phase 
described later are also for the first harmonic. 
 
Generalization Method 

To develop the method for generalizing the unsteady force, it is 
assumed that the unsteady force is combined with two effects, the 
potential field interaction and the wake interaction. For this as-
sumption, the unsteady force F(t) can be expressed by Eq. (3). 
 

( ) ( )θω += tAtF sin  

( ) ( ) ( ) ( )tFtFtAtA wpwwpp +=+++= θωθω sinsin   (3) 

 
The proposed method does two computations for one model to get 
inviscid and viscous flow solutions. The unsteady Reynolds aver-
age Navier-Stokes (U-RANS) solver is used to compute the viscous 
flow field. The unsteady force acting on the bucket obtained from 
the U-RANS consists of effects of both potential field and wake 
interactions. For the unsteady inviscid flow (Euler) solution, using 
a sharply pointed shape (cusp) for the nozzle trailing edge instead 
of the actual round shape is the key to restraining the dummy wake 
generation (Fig.2). Then only the potential field interaction can be 
obtained. A linear relation between the potential field and wake 
interactions is assumed and the unsteady force induced by the wake 
interaction is obtained by subtracting Euler’s aero-dynamic force 
from that of the U-RANS. After two computations, the amplitude 
and the phase of the unsteady force are obtained by Eqs. (4) and (5). 
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Fig. 2 Nozzle section trailing edge (cusp and round shapes) 
 
 
 
 
 
 
 
 
 
 
 
 
        (a) Viscous flow field             (b) Inviscid flow field 
 
Fig. 3 Instantaneous velocity flow fields for case3, d/Cn=0.15 
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The amplitude and the phase of the effects of potential field and 

wake interactions can be expressed as a function of axial gap length. 
The unsteady force for an arbitrary axial gap length can be pre-
dicted by making the numerical formula. 

Instantaneous velocity flow fields for inviscid and viscous flow 
solutions are shown in Fig.3. A wake generated from the nozzle 
trailing edge is observed only for the viscous flow field. This 
finding indicates that the influence of the wake can be excluded in 
the inviscid flow solution. 
 
RESULTS 

Figure 4 provides the results of the survey about the unsteady 
force and axial gap length d/Cn. Generally, the amplitude A be-
comes large when the axial gap length becomes small, but the trend 
is different for FT and FA of case 1, and FA of case 3, and the 
unsteady force does not monotonously change  according to d/Cn.  
In cases 1 and 2, d/Cn values which give amplitude A the local 
maximum and local minimum values are close for FT and FA, and 
the changes in the phase for d/Cn values are almost the same. But in 
case 3, FT and FA change in almost opposite ways and the changes 
in the phase for d/Cn do not look at all similar. As seen above, the 
amplitude and the phase of the unsteady force have different be-
haviours for d/Cn according to the bucket height h and FT and FA, 
and the trend in the amplitude of the unsteady force is numerically 
complicated. 

Figure 5 plots the amplitudes and phases of the potential field 
and wake interactions, which are obtained by inviscid and viscous 
flow solutions. When the effect of each interaction is obtained 
individually, the amplitude becomes large when d/Cn becomes 
small. The amplitude of the potential field interaction can be ap-
proximated by an exponential function of d/Cn, while the 
 

Blue: round shape 
Red: cusp shape 

Nozzle wake No Nozzle wake 
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(a) Case 1: h=100% 
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(b) Case 2: h=46.6% 
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(c) Case 3: h=0% 

 
Fig. 4 Amplitudes and phases of unsteady force 1st harmonic 
 
 
amplitude of the wake interaction can be approximated by a power 
function of d/Cn, for both FT and FA. The coefficients of these 
approximate expressions differ according to the bucket height h and 
FT and FA. Thus the amplitude of each interaction should be given 
by an expression under each condition. 

Next, the phase is considered. The phase of each interaction has a 
linear relationship with d/Cn. The gradients of these lines of the 
phase are almost the same in each case, then they do not depend on 
FT and FA, and this agrees with values obtained by Eqs. (1) and (2). 
Therefore the line of the phase is expressed by Eq. (6): 

 

i
C

d
k

n

+⋅=θ                                           (6) 

 
where k and i are the gradient and the intercept of the linear func-
tion of the phase of each interaction, respectively. In Fig.5, the 
vertical axis of the phase graphs is plotted with a larger scale than 
that of Fig.4 to make a point of showing that the phase changes on a 
straight line for d/Cn. If it is considered that a cycle includes angles 
from 0 to 360 degree, the values of 360 integral multiples are equal. 
   An example of the fluctuation of the bucket force is shown in 
Fig.6 (case 3, FA). The black line plots the fluctuation of the un-
steady force that is obtained by a viscous flow solution. The red line 
plots the fluctuation of the force of the potential field interaction 
that is obtained by an inviscid flow solution. The blue line plots the 
fluctuation of the force of the wake interaction that is obtained by 
Eq. (3). Figure 6 has the same trend as Fig.5 that the amplitude of 
each interaction becomes big when d/Cn is small. 
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(a) Case 1: h=100% 
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(b) Case 2: h=46.6% 
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(c) Case 3: h=0% 

Fig. 5 Amplitudes and phases of effects of potential field interac-
tion and wake interaction 
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However, the amplitude of the unsteady force is small when d/Cn is 
small. This depends on the phase relations of the potential field and 
the wake interactions. Figure 6 shows that the phase of each in-
teraction is approximately opposite for d/Cn=0.05 and that it is 
approximately the same for d/Cn=0.15. So it is revealed that the 
phase relations of the potential field interaction and the wake in-
teraction have a strong influence on the size of the amplitude of the 
unsteady force. 

The effect of the potential field interaction depends on the bucket 
moving distance ∆Lp where the nozzle trailing edge and the bucket 
leading edge approach each other axially, and the variation of the 
phase to d/Cn is equal to the variation of ∆Lp. The effect of the wake 
interaction depends on the bucket moving distance ∆Lw which 
relates to a straight line length that extends from the nozzle trailing 
edge to the bucket leading edge in the direction of the nozzle outlet 
flow angle, and the variation of the phase to d/Cn is equal to the 
variation of ∆Lw. Table 3 shows the gradients of each interaction 
obtained from ∆Lp and ∆Lw. In this paper, it is assumed that the 
gradient of the linear function of the phase is known from Table 3, 
and importance is attached to obtaining the intercept which is 
difficult to predict from a geometrical size by using Fig.5. There-
fore, all points which lead to a greatly different gradient from that 
of Table 3 are not used to predict the phase (red marks in Fig.5). 
The amplitudes of the excluded data are small, so it likely that the 
phase was not calculated accurately. Figure 5 shows that the in-
tercepts obtained from CFD data differ according to bucket height h, 
and a simple relation between intercept and h or ∆Lp, ∆Lw cannot 
be found, though ∆Lp and ∆Lw are considered generally to be tan-
gential distances that enlarge the effect of each interaction the most. 
This is the cause of the difference of bucket shape according to 
bucket height h which leads to the difference at the time when the 
change in the fluctuating pressure on the bucket surface becomes 
the maximum. This phenomenon can be seen in the pressure dis-
tribution shown in Fig.7 where the contour is (P-Pmean)/Ptotal. FT can 
be evaluated using Fig.7. The graphs which are written as “V” are 
the results of the viscous flow solutions, and the graphs which are 
written as “I” are the results of the inviscid flow solutions. The 
graph “V” shows the potential field and the wake interactions, and 
the “I” shows only the potential field interaction. Figure 7 “V” 
shows t obtained from ∆Lw (blue straight line), and it is in the 
vicinity of t where the wake is seen (oval part shown with the 
dashed line), and it is understood to be related to both t values. But 
both t values are not related to t for which the effect of the wake 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

(a) d/Cn=0.05                               (b) d/Cn=0.15 
 

Fig. 6 Bucket force fluctuation (Case 3, FA) 
 
 
Table 3 Gradient k obtained from ∆Lp and ∆Lw 
 

Case 1 Case 2 Case 3

607.7 882.6 1408.3

-1193.2 -1084.6 -739.4

Potential Field Interaction

Wake Interaction

Interaction ＼ Case No

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) d/Cn=0.07                             (ii) d/Cn=0.15 
(a) Case 1: h=100% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) d/Cn=0.07                             (ii) d/Cn=0.15 
(b) Case 2: h=46.6% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) d/Cn=0.07                             (ii) d/Cn=0.15 
(c) Case 3: h=0% 

 
Fig. 7 Time-space plots of bucket surface perturbation pressure, 

V=Viscous, I=Inviscid 
 

Red line: potential field interaction  
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(a) Case 1: h=100% 
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(b) Case 2: h=46.6% 

0

100

200

300

400

500

600

0.0 0.1 0.2 0.3 0.4

d/Cn

A
_F

T
(N

/
m

)

 

-180

0

180

0.0 0.1 0.2 0.3 0.4

d/Cn

θ
_F

T
(d

e
g)

  

0

100

200

300

0.0 0.1 0.2 0.3 0.4

d/Cn

A
_F

A
(N

/
m

)

 

-180

0

180

0.0 0.1 0.2 0.3 0.4

d/Cn

θ
_F

A
(d

e
g)

  
(c) Case 3: h=0% 

 
Fig. 8 Predictive amplitudes and phases of unsteady force 
 

interaction becomes strongest (Fig.7 “V” blue dashed line) ob-
tained from Fig.5. The same is true about the potential field inter-
action (red line). Figure 7 “I” shows t obtained from ∆Lp (red 
straight line), and it is in the vicinity of t where the pressure fluc-
tuation at the leading edge is maximum, and it is understood to be 
related to both t values. But both t values are not related to t for 
which the effect of the potential field interaction becomes strongest 
(Fig.7 “I” red dashed line) obtained from Fig.5.  Thus it is clear that 
prediction of the intercept of the phase is not easy. But the differ-
ence between t obtained from ∆L (straight line) and t obtained from 
the result of CFD (dashed line) is approximately equal, not depend 
on d/Cn and bucket height h. Thus the intercept of the phase is equal 
when the basis of the phase is set to ∆L, if d/Cn is changed. So the 
intercept can be obtained by one solution. 

The amplitude and phase of the unsteady force are obtained by 
Eqs. (4) and (5), using the amplitude and the phase of each inter-
action shown in Fig.5. These results are presented in Fig.8. The 
black lines plot the results which are obtained assuming that the 
phase of the potential field interaction and the phase of the wake 
interaction are the same, so this value is the sum of the amplitudes 
of the two interactions, Ap and Aw. The blue lines plot the results 
which are obtained assuming that the phase of the potential field 
interaction and the phase of the wake interaction are opposite: 
therefore this value is an absolute value of the difference between 
Ap and Aw. The obtained predictive values (red line) change be-
tween the black and blue lines according to the difference of the 
phase of each interaction. Therefore, there is a clear possibility of 
not evaluating quantitatively the unsteady force if the phase of each 
interaction is not considered. The ○ marks in Fig.8 are the results 
shown in Fig.5, and the data used to make the expression to predict 
the unsteady force. The □ marks in Fig.8 are additional data cal-
culated by CFD to evaluate the expression to predict the unsteady 
force, for d/Cn=0.07, 0.25. Figure 8 shows that the line for the 
predictive values (red line) and the ○ and □ are in good agreement 
with each other, for both the amplitude and the phase. Regarding 
the difference between the predictive values and the values calcu-
lated with CFD (shown with □), for the amplitude, the maximum is 
15 N/m and the average is 7.3 N/m, and for the phase, the maximum 
is 26degree and the average is 5.4degree. The difference between 
the predictive value and the calculated value is large when 
d/Cn=0.07. Thus it is necessary to improve the expression of the 
prediction. From the above, it is clear that the effect of each inter-
action can be expressed using an exponential function or a power 
function, so the difference between the predictive value and the 
calculated value of the amplitude easily becomes large when d/Cn is 
small. Therefore, if the number of calculations is increased when 
d/Cn is small and the expression is made again, the accuracy of the 
prediction can be improved. From the above, it is clear that simple 
expressions are possible for the relation between the axial gap 
length and the unsteady force, the amplitude and the phase of un-
steady force and this relation is different according to bucket height 
h and FT and FA. 

Next, prediction of the nozzle-bucket axial gap length by which 
the unsteady force becomes an extreme value is considered. It is 
confirmed that the unsteady force becomes nearly the maximum 
value when the potential field and the wake interactions are in the 
same phase, and the unsteady force becomes nearly the minimum 
value when the potential field and the wake interactions are in 
opposite phases. The axial gap length that leads to the extreme 
value cannot be decided only by the phase, because the amplitude 
of each interaction changes with the axial gap length. When the 
value at which Eq. (3) is differentiated by d/Cn is 0, the axial gap 
length takes the extreme value. When d/Cn is replaced with x, the 
differential equation is expressed by: 
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where a, b, m and n are the coefficients when the force of the po-
tential field interaction is expressed by an exponential function 
shown by Eq. (8) and the force of the wake interaction is expressed 
by a power function shown by Eq. (9). 
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bx

p wteatxF θ+⋅=                                     (8) 
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n

w wtxmtxF θ+⋅=                                     (9) 

 
And j in Eq. (7) is the phase when the unsteady force becomes the 
maximum and it is a function of x=d/Cn. The relation between j and 
θ is expressed by Eq. (10). 
 

)(90)( xxj θ−=                                                         (10) 

 
Figure 9 presents the results obtained by Eq. (7) which is useful 

to predict the axial gap length at extreme values of the unsteady 
force. The ordinate is normalized by dividing the value of Eq. (7) 
by the maximum value in the range of 0.0<d/Cn≦0.4. Figure 9 
shows that the trend of the value of Eq. (7) to d/Cn is different 
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(a) Case 1: h=100% 
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(b) Case 2: h=46.6% 
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(c) Case 3: h=0% 

 
Fig. 9 Prediction of axial gap length at an extreme value of the 

unsteady force 

acording to bucket height h, namely there is a different bucket 
profile. When h is large, the value of d/Cn at the extreme values of 
the unsteady force is close for FT and FA, and there are only a few 
extreme values. The axial gap length that can reduce both FT and 
FA as much as possible can be selected easily for such h. But in case 
3, where FT becomes the maximum, while FA becomes the mini-
mum, there are a lot of extreme values compared with cases 1 and 2. 
Therefore, it is necessary for a bucket shape like that of case 3 to 
choose the axial gap length that does not enlarge the unsteady force. 
From the above, for bucket design, it is clearly important to get the 
tendency of the amplitude and the phase of each interaction quan-
titatively. It is confirmed that the axial gap length d that become 
extreme values obtained from Eqs. (1) and (7) are equivalence. 

Next, the unsteady force obtained assuming that the potential 
field interaction and the wake interaction are in the same phase 
(shown in Fig.8) is considered. The unsteady force becomes large 
for FT when the axial gap length becomes small and bucket height 
h is small. But the factor causing the unsteady force to become large 
differs according to bucket height h. In case 2, the factor is the 
effect of the potential field interaction, but in case 3, the factor is the 
effect of the wake interaction. FA shows hardly any difference for 
the unsteady force with bucket height h. 

Finally, the amplitude of each interaction is considered. The 
amplitude of the effect of the potential field interaction is largest in 
case 2, it does not depend on FT and FA. But the amplitude of the 
effect of the wake interaction is largest in case 3 for FT, and in case 
1 for FA, thus the trend of the amplitude of each interaction is 
different. Moreover, the effect of the wake interaction for FT in case 
3 is extremely large compared with the other cases, so it is neces-
sary for generalization of  the unsteady force to study the factor 
related to the difference of the effect by bucket height h.  

As exemplified by the results of the generalization of the un-
steady force, the present numerical method is effective for de-
signing a turbine bucket with reduced stress on the bucket, so it is 
useful to produce highly reliable turbomachines. 
 
CONCLUSIONS 
    The unsteady force of steam turbine buckets was examined by 
2-dimensional CFD. The split method was described which ex-
amined the effect of the potential field interaction and the wake 
interaction from a viscous field that complexly affects the unsteady 
force. The method does two computations for one model to get 
inviscid and viscous flow solutions. For the unsteady inviscid flow 
(Euler) solution, using a sharply pointed shape (cusp) for the nozzle 
trailing edge instead of the actual round shape is the key to restrain 
the dummy wake generation. Then only the potential field interac-
tion can be obtained. The unsteady force acting on the bucket 
obtained from the U-RANS consists of both potential field and 
wake interactions effects. Assuming a linear relation between po-
tential field and wake interactions, the unsteady force induced by 
the wake interaction is obtained by subtracting the Euler’s 
aero-dynamic force from that of the U-RANS. 

This paper adopted the nozzle-bucket axial gap length for the 
factor to be studied and used the proposed method to calculate the 
unsteady force of the bucket sections with different bucket heights 
in the same stage. Three points were seen from these results. (1) 
The amplitude of the unsteady force with the nozzle passing fre-
quency component could be approximated by an exponential or a 
power function of the axial gap length. (2) The absolute value of the 
effect from each interaction was different due to the bucket section 
difference. (3) The phase of the unsteady force with the nozzle 
passing frequency component fluctuation had a linear relationship 
with axial gap length. As a result of this linearity, a simple expres-
sion was possible for the relationship between the nozzle-bucket 
axial gap length and the unsteady force and between the amplitude 
and the phase of unsteady force with the nozzle passing frequency 
component. The unsteady force obtained from the simple expres-
sions showed good agreement with results of viscous flow com-
putation.  

Underlined numbers: d/Cn at local minimum 
Not underlined: d/Cn at local maximum 

Black: FT   Red : FA 
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In conclusion, the proposed simple relationships between the 
nozzle-bucket axial gap length and the unsteady force were effec-
tive and easily predicted the force. 
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