大容量ガスタービンの高温・高効率化の開発の歴史

1 まえがき

世界的な地球環境に対する関心が高まる中で、CO₂排出量削減対応としてエネルギーの有効利用が一層強く要求されており、優れた熱効率を持つコンパンドサイクルプラント技術が広く採用されてきた。プラントの熱効率は、その主役となるガスタービンの高温・高効率化により著しく向上してきた。

図-1は、これまでに開発された大容量ガスタービンの高温・高効率化の変遷を示している。タービンの入口温度は1980年初頭に1150℃級まで上昇し、新型のコンバインドプラントが1984年に東京電力孵化3号機で完成した。その後も高温化が進み、1990年代初めに1350℃級ガスタービン（M501F/M701F：Fシリーズ）、1990年代中ごろに1500℃級ガスタービン（M501G/M701G：Gシリーズ）が開発・実用化された。

図-2は、タービンの入口温度とコンパインドプラントの熱効率の関係を示したものですので、1150℃級から1500℃級に高めることができによりプラントの熱効率は20％向上してきている。このようにガスタービンが有効な原動機であると認められた理由は、ガスタービンエンジンが有している潜在能力が高温化技術の進歩により、十分発揮出来るようになったからである。

本文では、ガスタービンの高効率化を可能にした高温化設計技術（燃焼技術およびタービン部の冷却技術と耐熱材料強度技術他）、および今後のガスタービンの課題について述べる。
2 高温化設計技術

2-1. 燃焼器の高温化設計

コンバインドプラントの燃焼器はガスタービンのタービン入口温度の上昇により向上するが、同時に燃焼器からのNOx値も指数関数的に増加する。そのため、高温ガスタービンの開発は燃焼器からの排出NOx量の増加をいかに抑えるかが重要なポイントとなる。

一般に燃焼方式としては、拡散方式と予混合方式がある。拡散燃焼方式は火災は安定であるが、火災温度が高温となり、例え希薄燃焼させてもNOx低減効果が少ない。

一方、予混合燃焼方式では、火災温度を低弾に抑えて、NOxを効果的に低減出来るが、安定燃焼範囲が狭いため、負荷変化に応じて燃焼空気量を調節して安定燃焼を維持している。

図-3に、Gシリーズガスタービンの蒸気冷却燃焼器を示す。燃焼器尾部に設置したバイパス弁の開度を調節することにより、安定燃焼を維持して低NOx化を達成している。

予混合燃焼器の設計で必要とされる空気は、燃焼用、低NOx化用および壁面冷却用がある。図4に、タービン入口ガス温度の上昇に対する燃焼器の必要空気量を示したものであり、1500℃級ガスタービンでは、壁面冷却用空気が不足する。そこで燃焼器の壁面冷却をバイラから抽出した蒸気で行い、冷却後の蒸気をボイラで回収するシステム（回収型蒸気冷却システム）を開発した。この蒸気冷却システムの採用により、1500℃級ガスタービンでのNOxの発生量は1350℃級と同等レベルに抑えることが可能となった。

尚、燃焼器の冷却に使用した蒸気は、蒸気サイクル側で回収することで、プラント効率を高めている。
2-2. 冷却設計技術

タービン部の高圧縮設計とは、タービン空力解析技術および耐熱技術（炭素冷却設計技術、燃焼技術、耐熱材料強度技術）が必要であり、調和のとれた総合設計が重要である。

図-6はタービン入口温度の上昇に対する耐熱材料技術・冷却技術・遮熱コーティング技術の寄与度について示したものであり、冷却技術の進歩が高圧縮設計に最も寄与して来た。図-6にD、F、Gシリーズのタービン第1段動静翼の冷却構造の変遷を示す。

1500℃級のGシリーズの第1段静翼は、3インサート構造、内部インピームメント冷却、そして、翼面は多数のフィルム冷却孔を配列した全面フィルム冷却による高温ガスからの入熱の低減を図っている。また、翼表面およびシェラウド部の全面にTBCを施して遮熱効果を高めている。第1段動翼はサーベンツイン式冷却通路構造を採用し、冷却通路に斜めターピュレータを配し、翼面には第1段静翼と同様にフィルム冷却による全面フィルム冷却とTBCの併用により冷却性能を高めている。

これら最新技術を適用したタービン第1段動静翼については、実機翼を供試体とした高温翼列試験および実機の3/5スケールモデルの翼を用いたタービン入口温度1500℃の回転モデル試験機（図-7）にてその空力性能および冷却性能を検証した。
冷却設計技術において、各冷却翼へ適切な設計空気量を送る冷却系統の設計は重要である。

Gシリーズでは、1～3段動翼を冷却しており、図-8に示すように、第1段静翼は圧縮機出空気で、第2、3段静翼は圧縮機中間段からの抽気によりそれぞれ冷却する。動翼およびロータ部の冷却は従来と同様に圧縮機出空気を外部クーラで冷却した空気で行われている。

2-3 耐熱材料技術

ガスタービン用耐熱材料は、年々上昇するタービン入口温度に対応して開発されてきた（図-9）。静翼材料はタービン入口温度1200℃級までは、溶接性を考慮してCo基合金（E768, X-45）が採用されて来たが、タービン入口温度の上昇と共に、クリープ疲労強度の優れたNi基合金が採用され、当社は溶接性の優れたNi合金MGA2400を開発した。

一方、動翼材料は、従来のNi基合金（IN738, U720, U520）から更にクリープ強度を高めたMGA1400を開発し、Gシリーズ、Gシリーズでは一方向凝固翼（DS翼）を採用している。

図-10に示すようにMGA1400材は従来のIN738LC材に比べクリープ強度は、メタル温度換算で約30℃優れており、一方向凝固材を使用することでさらに約20℃向上する。

3 信頼性の確立

ガスタービンのタービン入口温度

は、1970年代の900℃レベルから現在1500℃レベルまで上昇し、実用化されている。ガスタービンが、コンパインドプラントの主機となり得る理由は、圧縮機・燃焼器・タービン部の要素試験およびガスタービンの初号機全負荷試験等により、徹底した事前検証を実施し、高い信頼性を確立してきたことによる。
当社は、これまで数多くのガスタービンを独自開発して来たが、これらのガスタービンの初号機に対しては、工場実荷負試験を実施した。最初の1000℃級M701Bガスタービンの開発では、水冷却器で負荷吸収する工場実荷負検証試験（図-11）を開発・建設した。

この設備は、その後容量を増大させ、1350℃級ガスタービンの開発・実荷負試験まで使用された。初号機ガスタービンの実荷負試験では、ガスタービンの圧縮機・燃焼器・タービンなどに多数の特殊計器を設置し、圧力・温度・応力など、1800点において、特性計測を実施し、性能、機械的特性、信頼性を確認した。

1500℃級M501Eの開発においては、ガスタービンのみならずM501Eを主機としたコンパインドプラントの信頼性を確認するために、図-12に示す長期実証プラント（出力330MW）を工場内に建設し、長期間に亘る徹底検証実験を実施した。

今後、更に最先端の高温化技術で開発されたガスタービンに対しては、実機エンジンの検証設備による徹底した事前検証により、高い信頼性を確立することが必須条件となるであろう。

4 高温化・高効率化の今後の課題

エネルギー問題および地球環境の問題は、我々に迫られた重要な問題であり、省エネルギー化および低公害化に対応可能なガスタービンは、今後も重要な役割を果たすこととなる。

今後も、更なる高温ガスタービンが開発され、コンパインドプラント効率を向上させて行くものと予想するが、燃焼温度の上昇によるNOx値の増加および高温部材の冷却空気量増大による効率向上の抑制等の課題が残る。

NOx値増加の抑制法として、排ガス再循環システムや触媒燃焼法があるが、システムの信頼性や触媒担体の機械的・熱的信頼性の確立に更に多くの開発研究が必要である。

一方、冷却方式としては、既に1500℃級ガスタービンの燃焼器やタービン動静葉で実用化された蒸気冷却が他の部品にも採用され、プラント熱効率は向上するであろう。

ガスタービンでの高温化による性能向上効果は、タービン部の冷却空気量に大きく影響される。冷却空気量削減のためには、高温疲労強度の優れた超耐熱材料の開発が必要となる。最も高温強度の優れたセラミック材料の実用化が達成できれば、ガスタービン効率およびプラン
ト効率は飛躍的に伸びるが、セラミック材料は金属に比べてその靭性値が著しく低いという欠点があり、大型ガスタービンの実用化レベルまで向上させるには時間がかかりそうだ。より現実的な対応は、高温クリープ疲労強度の顕著な改良を目指している超耐熱材料の開発・実用化とならう。

ガスタービンは、その潜在能力を生かして、更なる高温・高効率化が進められている一方である。次期超高温ガスタービンの開発には、NOx抑制燃焼システム、高性能冷却翼および超耐熱材料などの実用化のために、多大な費用と時間を必要とする。

このようにガスタービンの開発には膨大な開発費用がかかることで、米国ではエネルギー省（DOE）が、ATS（Advanced Turbine Systems）、NGT（Next Generation Turbine）、HEET（High Efficiency Engines and Turbines）などの開発に政府が多額の援助をしている。日本においても、エネルギー資源の有効活用および環境保全の観点から最適なエンジンであるガスタービンに対しては、産学官が協力して積極的な技術開発を推進し、グローバルなエネルギーや戦略を確立させる必要があると考える。

＜参考文献＞

(1) K. Tsukagoshi et al., 2001、「LONG-TERM OPERATING EXPERIENCE OF MITSUBISHI ADVANCED G-SERIES GAS TURBINE」, International Conference on Power Engineering (ICONE) 2001

(2) 塚越, 1999, 「高温ガスタービンの開発」, (社) 日本機械学会、将来の高効率蒸気サイクルに関する調査研究分科会 成果報告書

(3) 塚越 他, 1998, 「1,500℃級ガスタービン501Gの開発と実証運転について」、GTSJ Vol.25No.100

(4) Aoki, S., 1996, 「Development of the Next Generation 1,500 °C Class Advanced Gas Turbine for 50Hz Utilities」 ASME Paper 96-GT-314

1. まえがき

1970年代から20世紀の末までの30年間は、国産技術による産業用・船用ガスタービンの開発が活発に行われた時期であった。すなわち、大型分野では通産省（当時）の国家プロジェクトであった100MW級AGTJ-100A（ムーンライト計画の高効率ガスタービン1978年〜）の開発を契機にした大型ガスタービンの国産化、1974年の消防法の改定に端を発した非常用発電への小型ガスタービンの普及、1980年代より小型常用発電分野における分散型コージェネレーションへのガスタービンの適用、国土交通省の国家プロジェクトであった2500kW級船用ガスタービンであるSMGT（1997年〜2002年）の開発など多くの国産ガスタービンの開発がそれである。これらの開発を通じて国産技術によるガスタービンは動力変換用の内燃機関として定着した。

その過程で得られた経験と技術は、従来の技術導入時代を一線を画するものであり、それを21世紀を背負う若手のガスタービン技術者に継承していくことは重要なテーマである。ここでは自ら産業用ガスタービンの開発に関わって得た知見の一端を述べる。

2. 川崎における産業用ガスタービン開発の歴史

国産初のジェットエンジン「ネー0」は戦中の1943年に当時の川崎航空機（現川崎重工）明石工場で運転に成功したが、敗戦による航空機事業の禁止で中断した。その後、1952年からの深化末期のジェットエンジンのオーバーホールが戦後のガスタービン事業の始まりである。

1）外国製ガスタービンによる応用研究（1960年代後半）

ヘリコプター用など1〜3MW級の小型航空用ガスタービンのライセンス生産は難き足らず、車両用や発電用に転用する試みが行われた。この経験が、その後の国産ガスタービン開発に繋がった。

2）200kW級発電用ガスタービン「SIA」の開発（1974年〜）

ガスタービンの技術と事業を発展させるためには、我が国独自の技術によるガスタービンが必要との判断で開発が開始された。ガスタービンは小型・軽量・大出力で機械力学的にも合理的な内燃機関であり、将来、産業用としても有用であろうという判断であった。

この開発に当たっては、実用製品として優れた実績があるガスタービンをモデルとし、さらに実機を試作することから始めた。公表資料などを分析すると共に、診断の理由が無い場合はその構造を踏襲する。これはオートバイ等で取られている設計手法である。すなわち、以下の2つがその理由である。

① 実用に供されている機械の構造は、幾多の技術課題が解決された貴重な手本である。
② 十分と思われる事前検討をして、それ以上のこととは予測し難いレベルに達した場合は「機構に問う」ことが必要である。実際に機械を作って運転して、それが壊れて初めて認識できる問題が数多くある。すなわち作らなければ開発は始まらない。
流体、熱、振動、回転などの複合現象が同時に存在する実機ガスタービンでは、単一現象を捉えたシミュレーションのみでは予測できない事例が多い。運転は出来るだけ過酷な条件で行い、発生した問題を可及的速やかに解決することによって、初の実用ガスタービンは完成した。

3）コーポレーション用ガスタービンの開発（1984年～）

1980年代後半からは、エネルギーや有効利用の観点から分散型のコーポレーションシステムが普及すると見て、これに組み込む1～2MW級のガスタービン「M1A」シリーズの開発を行った。これは、同クラスの非常用ガスタービンをベースに、数千～数万時間の耐久性を持ち、更に、タービン、燃焼器、圧縮機などの改良により熱効率も改善した常用ガスタービンである。

ガスタービンの寿命を律速する要因には、低サイクル疲労、高サイクル疲労、高温部材のクリープ、腐食、エロージョン、高温酸化などがあり、これらを克服して常用ガスタービンを完成するには相当的な技術的挑戦が必要であった。

1988年には、排熱ボイラーで発生した蒸気をタービンに注入して発電効率を大幅に向上させたコンビナインタイプガスタービン・コーポレーションシステム「PUC15CC」も市場投入している。これは、排熱と電気出力の比率を適切なパターンに応じて変えられるという特徴も有する。

4）中型コンパインドサイクル用ガスタービン（1993年～）

さらなる小型化と高性能化を目指して、多段軸流圧縮機を採用した7MW級の「M7A」、20MW級の「L2OA」を開発した。これは小型ガスタービンの開発技術と、産業用の軸流送風機の技術を融合・発展させて成立したもので、異なる製品に関する技術の交流によって新しい分野が開拓できた好例であった。

5）国家プロジェクト等への参加

① 300kW級セラミックガスタービンの開発（1988～1998）

通産省工業技術院（当時）の国家プロジェクトであり、燃焼器やタービンにセラミックスを使用して、無冷却でタービン入口温度1350℃を実現し、このクラスでは画期的な熱効率42.5%(LHV)を世界に先駆けて達成した。

金属材料に対して線膨張係数が約1/3であるセラミックスと金属を高温で織縫する技術、酸性材料で材料の降伏現象が無いため応力集中を全く許容しないセラミックスを構造部材として利用する技術は、金属製ガスタービン設計とはかなり異なったセンスが必要であり、貴重な経験であった。

② 2500kW級船用ガスタービン（スーパーマリンガスタービン）の開発（1997～2002）

国土交通省の国家プロジェクトで、1200℃級の空冷タービンと再生熱交換器を採用して高速ディーゼル並みの38%の熱効率を達成した。またA重油を燃料とした予蒸発・予混合による希薄燃焼方式の低NOx燃焼器を採用し、ディーゼルエンジンよりも一桁低い1g/kW・Hrを達成した。これによって航空用小型でない船用ガスタービンの実用化の道を開いた。これはガスタービンの技術を有する国内の5社が、圧縮機、燃焼器、タービン、熱交換器をそれぞれ担当し、川崎重工が全体設計と陸上運転試験のとりまとめを行ったものであるが、各要素についての性能と構造的な取り合い条件を結び

Download service for the GTSJ via 54.70.40.11, 2020/04/05.
り、個々に目標管理することにより達成できたものである。

この開発を通じて学んだ重要なことは、とりまとめの役割を担う会社が、ガスタービン全体の運転と計測を円滑に行うことを第一義として、労力の提供と情報開示を惜しまないことが共同開発を成功するための必須条件になるということであった。

6）歴史から学ぶガスタービン開発の要件

以下のように、欧米ガスタービンメーカーのライセンシーの立場では、技術の育成と自主的事業展開は不可能であるとの認識で1970年代から国産の独自技術によるガスタービンの開発に踏み切ったわけであるが、その過程は決して平坦ではなかった。開発にリスクは付き物であり、自主技術の重要性を認識して生みのリスクをかすか否かで技術の育成と自主的事業展開が可能になるか否かが決まる。以下に開発を成功に導く要件を挙げる。

①経営トップの決意と強い意志

短期的な経営指標の視点からはリスクが大きいガスタービンの開発を行うという答えは出ない。開発の決断のためには、経営トップの製品化の可能性に対する技術面、事業面での先見性に基づいた洞察力、開発資金の調達が重要である。また、決断した後に成功するまでやり遂げるという不退転の意気が必要である。

②プロジェクトリーダー（チーフエンジニア）の指導力

比較的小規模のガスタービン開発においては、プロジェクトリーダーとチーフエンジニアは同一人物が兼ねるのが効率的である。以下はプロジェクトリーダーに要求される要件である。

・高い目標を達成するにはメンバーの総意による合意の下で、技術的リーダーシップを背負うプロジェクトリーダーが必要である。それには広範囲なビジョンとプロジェクトの抽象的な目標を具体化していく構想力が要求される。構想力とは経験から生まれる直感である。すなわち自分が持つデータベースから課題を論理性に抽出してモデリングし、ビジョンを加えてコンセプトを作り、形として具体化する、さらにその結果のもとを受影響を多面的に予測する能力である。

・問題が生じた際には代替案をすぐに用意し判定を最少にする。緊急の場面ではリーダーの直感があることをいう。論理的思考は常に100%正確な解を与えるわけではない。論理を超えたところに解決策がある。科学的・定量的に解決できない場合は直感しかない。直感に従って動いていく間に論理的に説明できるようになる。

・プロジェクトを成功に導く強い意志、情熱、真摯な努力が必要である。リーダーの情熱と努力なくして新規開発の成功はありえない。

・プロジェクトで得たノウハウの継承と結果のフィードバックが重要である。市場、顧客がプロジェクトの成果をどのように判断したか、失敗の原因は何かを明らかにして学び、次なる展開の糧にする必要がある。

③人材・組織

経営トップの確固たる方針があれば、プロジェクトリーダーは縱横に機能し得る。その下でのプロジェクト員の構成はできる限りフラットが望ましい。技術に長けず、ヒエラルキー組織は情報の共有化にとって障害となる。要件が満たされれば人材は自ずと集まる。
4. 技術継承における課題

絶えず技術を進歩させながら、長期にわたって開発を継続して行くためには技術の継承が重要な課題となる。数年毎に新しい開発プロジェクトを起こす場合、メンバーの少なくとも半数は未経験者になる。経験者を核にしながら未経験者に技術を継承し、技術レベルの維持・向上を果たすのは容易ではない。それは開発におけるナレッジ・マネジメント（Knowledge Management）そのものである。時間・費用の面で効率良い開発を行なったら、いかに所期の成果を上げられるか、そのマネジメントの良否で開発に要する時間・費用が数倍も異なり、しかも失敗と成功が分かれる。以下に、技術の継承に関して重要と思われる項目を示す。

1) 人材の選択

ガスタービン開発では、全体をまとめることプロジェクトリーダー（チーフエンジニア）の下で、圧縮機、燃焼器、タービン、構造部材などの各要素の詳細設計をリードするチーフが必要である。技術者の中には、このチーフになる人材、その指導の下でワークを提供する人材に大別される。前者はプロジェクト全体から各要素に与える抽象的な課題を、詳細設計の中での実際の形として具現化できる能力が必要となる。これは前述の構想性であり、経験から生まれる技術的な直感の能力である。これは開発プロジェクトでの経験を通じて得られるもので年齢と無関係であるが、彼の機械に対する興味と、幼児期からの人生の中で物作りに積極的に関わった経験が土台になる。これは専門教育の中で単に理論を学んでも得られるものではない。

また、技術者としての価値観は概ね最初の5年ほどで形成されるが、ガスタービンの開発技術を持つことが技術者としての第一義であるという価値観がなければ育たない。「鉄は熟いうちに打て、である。」

2) 暗黙知の伝達

一般に、組織やその構成員が有しているノウハウには形式知と暗黙知がある。前者はドキュメントなど見える形になっている情報で、組織に属する者は誰でも利用できる。後者は経験者の頭の中にある情報で彼を介してしか伝えられない。これはいわゆるノウハウの大きな割合を占める。教科書や論文を読んでもガスタービンの開発はできないのである。

この暗黙知を伝えるにはOJT（On the Job Training）が重要である。筆者の体験から、その手法として効果的と思われるのが定例的な技術ミーティングである。これはプロジェクトに属する技術者が週1回程度の頻度でミーティングを行い、業務の経過における成果を報告書としてまとめ、全員で議論するものである。この場には、まとめ役（チーフエンジニア）は居るが、技術の各論に対しては全員がフラットな立場でディスカッションをする。発表者は技術検討や実験の結果のみでなく前提条件を含むプロセスの全てをレポートし、メンバー全員がその課題を共有して議論する。その議論を通じて個々メンバーの理論と思考過程が確実に学びされると共に担当分野以外の全体情報を知ることができる、技術的視野が広がる。このようなミーティングの場は、経験者からの暗黙知を全メンバーへ伝達する絶好の機会である。なぜなら暗黙知は体系化されていないので、課題に出会った際にのみ経験談として伝授し得るからである。

3) 暗黙知を形式化

しかししながら、上述の技術ミーティングで個々のメンバーの顔が見えることが条件であって高々20人程度が参加できる限りである。参加していない者には伝えられないという欠点もある。むしろ効果的ではない。むしろ更に効果的に技術を継承させるには、ノウハウを暗黙知のままで放置せず形
式知化する必要がある。さらに、暗黙知を形式知化して組織全体が共有することにより、その形式知を土台として更に高度な暗黙知を生み出す連鎖的効果が生じる。

ここでいう形式知とは、例えば設計基準やマニュアルであり、業務規則であり、データベースであるが、これを作るのはかなりの労力を要する。また個々の暗黙知のうち独自のものを排除し、普遍的な内容の形式知にするには複数の経験者のチェックが必要である。さらに現在の技術水準に基づいた過剰な枠を破ることは危険である。例えば「設計応力は＊＊N/mm2以下である」というような枠であり、これによって技術の進歩は停止する。むしろ思考のプロセスや経験から得た知恵を形式知化することがより重要である。例えば、ある要素を開発する場合、性能重視と強度重視の何れとかも決め難しい場合には同時に両方のタイプを作っておいて、ダメなら違うほうを活かす。そうすると結果が出た後で新たに別のタイプを作る場合に比べて開発期間はおよそ半分になる、そういう知恵みたいなものである。

暗黙知を形式知化する作業はボランタリー（voluntary）な仕事であり、これを組織として継続するためには提供者の貢献度に相応しい評価制度が必要である。特に、成功の経験は形式化しやすいが、失敗の経験は難しい。開発過程で学んだ失敗の経験こそ、それを繰り返さないために貴重である。そのためには情報提供者へのインセンティブが必要である。

最近の若手技術者の一般的傾向は、良く言えば素直であるが、先輩に自ら問い掛けるなど暗黙知を積極的に収集することが不得手な傾向にある。従って形式知化（マニュアル化）は技術の継承にとって今後ますます重要になると思われる。

5. 技術者教育に望むこと。
1）直感力（センス）の育成

技術を継承するためには、前述のように構想力すなわち経験に基づいた技術の直感力に優れた人材の育成が重要である。近年、この能力を持った若い技術者が減っていることは由々しき問題であり、技術者教育の重要性が増してきている。

この能力は、機械に対する興味と、幼児期からの人生の中で物作りに積極的に関わった経験が土台になる。これは専門教育の中で単に理論を学んでも得られるものではなく、自ら設計した機械を自ら作らせ実験させるという観点から体系的な物作りの体験が重要である。

2）基礎教育の徹底と非コンピュータ化

暗黙知の形式知化はその手間と効果からみて限界がある。従って、暗黙知を積極的・効果的に吸収する能力を育成することが重要である。

いま開発の現場では設計ツールとして CAE システムの導入が進められている。これは開発設計の能率と精度を追求した結果であり、効果を上げている反面、若手技術者の育成の観点からは弊害も出ている。すなわち、計算の過程がシステム化、ブラックボックス化され、処理が巨大でデータがあまりに膨大であるため、結果を単純化して直感的に捉えることが困難になり、解析業務はできるが設計はできないという状況に陥る。

かつて、ガスタービン技術の基礎である流体力学および流体機械、材料力学、振動工学、熱力学は、複雑な物理現象を手計算で評価することが可能になるように単純化する学問であったとも言える。その過程で現象を左右する重要なパラメータを抽出することができた。すなわち学ぶ者は、この単純化によって現象の本質を理解することが容易であった。

設計は相反する条件のトレードオフである。例えば性能と信頼性・コストとの折り合いをするこ
となどが必要な作業であり、それを頭の中で処理するには現象の本質を単純化して捉える訓練が
重要である。
従って専門教育では、例えば、コンピュータを使わないで機械を設計させるような演習を課
するのも重要である。企業が技術者教育に望むことは問題抽出能力とその解決力であり、これは基
礎学問がしっかり身についていないと期待できない。
3）産学連携による研修体験
企業内では開発課題が山積しており個性的な技術者不足である。一方、研究・教育現場では人材は
居るが実務装置などのインフラは不足である。この点で両者のニーズは一致しており研究開発面での
産学連携をより活発にすべきであろう。実テーマに取り組むことは技術者教育にとって最も効果的
である。
また欧米の大学のように、3ヶ月程度のインターンシップを制度的に課することも考えるべきではな
からないか。受け入れる企業の負担は大きいが、日本の技術の将来にとって実務教育は重要であると認
識すべきであろう。

6. すび
メガコンペティションの時代に日本が生き残るためには最先端なる物作りのみでは通じない。独自
技術の集積による付加価値が高い製品を持って世界市場で積極的に事業展開をすることが必要である。
自ら汗を流し、泥にまみれて問題を解決した自主技術を後輩に継承することができるか否かに21世
紀の日本の浮沈が掛かっている。
（以上）
携帯用ガスタービン発電機の開発（排気熱活用時の性能検討）

前川 裕彦 (株)IHIエアロスペース
熊倉 弘隆 (株)IHIエアロスペース
木之下 博 (株)IHIエアロスペースエンジニアリング

1. はじめに

IHIエアロスペースでは小型ガスタービンおよびターボチャージャーの技術を応用し、世界最小のガスタービン発電機（ダイナジェット2.6：2.6kW）を開発した。

発電機出力10kW以下の携帯用・可搬式発電機の世界市場規模はおよそ100万台/年であり、海外進出での生産を含めて、その7割をが国が供給している。将来、国内の需要はおよそ10万台/年でここで数年は推移しているが、IT化が進む中で小型・高電気品質発電機の業務用、非常用分野における今後の需要拡大が期待される。本分野においては、小型・軽量、低騒音・低振動性、コンピュータに接続できる高電気品質、燃料の長期保存性（非常用向け）などが必要とされるが、従来のレジンプロエンジンを用いた発電機ではこれらを高いレベルで満たすことは困難であった。そこで、小型ガスタービン技術を応用し、これらのニーズを満たす次世代の携帯用発電機を開発した。今回、ガスタービン発電機の排気熱活用したシステム商品の開発を行ったので、その概要を述べる。

2. ダイナジェット2.6の概要

ダイナジェット2.6は、一軸再生式ガスタービンエンジンと、これに直結して10万rpmで回る超高速発電機、および、超高速発電機から出力される高周波電力（約1.6kHz）を商用電源と同じ電圧・周波数に変換するインバータとの組み合わせにより、小型、軽量、低騒音、高電気品質を実現することができた。超高速発電機は、始動時のスタータモータが直結している。表1に諸元および特性を示す。

ガスタービンの強みを生かし重量・寸法はディーゼル発電機（同クラス）の1/2～1/3である。また、運動音の周波数が高く音が鳴きやすいため、クラスターへの低騒音性を実現している。

図2にダイナジェット2.6の出力電圧波形を従来品の波形と比較して示した。ダイナジェット2.6の波形は商用電源に近い品質のものとなっており、コンピュータや通信電子機器に直結することがができる。
3. ダイナジェット 2.6 の技術的特徴
ガスタービン式携帯用発電機として世界最小の本ガスタービンを開発する際の主要な技術開発ポイントを述べる。

3.1 エンジンサイクル
超小型ガスタービンのサイクル設計において重要な検討課題は以下の点である。
(1) 空力要素（コンプレッサ、タービン）性能：
空気流量、回転数、圧力比が効率に与える影響（超小型ではクリアランスの影響が効率に与える影響が大きいため、この点の考慮が必要）。
(2) 機械損失：軸受損失の影響（小型空力コンポーネント単体では効率最適点は高回転域となるが、軸受損失は高回転域で高くなるため、システム効率の最適点はより低い回転域となる）。

3.2 エンジンの構成
以下の項目を検討しエンジンレイアウト（図 4 参照）を決定した。
(1) 超高速発電機の冷却：タービン、熱交換器、燃料器などの高温部から発電機への伝熱を防止し、用意に高速発電機を冷却できる構成にする。
(2) 外部への熱損失低減：エンジン高温部からエンジン外部への熱損失を低減し、燃費向上とパッケージ内の温度上昇抑制を図る。
具体的にはエンジン高圧部をチャンバに格納し、高圧部全体を低温のコンプレッサ出口空気で覆う構成とする。
これを利用する構成として、軸受を発電機とエンジン高圧部の間に設置し、発電機をエンジン高圧部から熱的に分離する構成とした。（図示のように、コンプレッサとタービンを背面合わせとした片持ち軸系として、発電機とエンジンは軸受を共用する。）この超高速船用記発電機とエンジン部（部分カットモデル）を図5に示す。

4. 排気熱の活用

4.1 コジェネシステムとしてのメリット
近年、我が国においてマイクロガスタービン発電機は、分散発電システム、移動用電源としてだけでなく、その良質な排気をはじめとする優れた対環境性のため、排気熱回収機器を接続した総合効率の高いコジェネシステムの普及が進んでいる。
一方、ダイナジェット2.6は、超小型ガスタービンで発電効率が高くないため（10％弱）、単に総合効率のみに着目したシステムとしてはメリットが出にくい。しかし、超小型ガスタービンの特徴を活かした新たなコジェネシステムのコアとなるポテンシャルを有している。
ダイナジェット2.6の特徴を以下に示す。
(1) 他のガスタービンと比べて、圧倒的に小型・軽量であり搬送性に優れる。
(2) 長期保有性に優れた燃料を使用しており、非常用に適している。
(3) 安定した風流面と異なり、排気を利用できる。

4.2 排気熱の特性
ダイナジェット2.6において利用できる排気熱エネルギーおよび排気温度を図6、7に示す。ダイナジェット2.6の排気熱エネルギー、排気温度は、発電出力によって決まり、発電出力2.6kWのとき、43kW、330℃である。
ここで、排気熱回収機器を接続し、排気圧力が10kPa上昇した場合を想定すると、発電出力は、TIT上限の制約により2.3kWが上限となり、このときの排気熱エネルギー、排気温度は、46kW、410℃となる。
また、より高い排気温度を必要とするコジェネシステムのために、ダイナジェット2.6の熱交換器をなくして、タービン出口温度まで排気温度を高めた場合の排気熱エネルギー、排気温度は、発電出力2.6kWのとき、51kW、550℃となる。また、排気圧力が10kPa上昇した場合は、発電出力は2.4kWまでとなり、排気熱エネルギー、排気温度は、58kW、620℃である。

4.3 排気熱を活用したシステム商品
前述の特徴を活かしたシステム商品として、暖房システム、乾燥トイレシステムの開発を行ったので、その概要について述べる。
4.3.1 暖房システム
暖房システム「カセットヒーター」の外観を図

Download service for the GTSJ via 54.70.40.11, 2020/04/05.
8 に、仕様を表2に示す。「カセットヒーター」は、ダイナジェット2.6の排気熱を利用できる強制給排気方式（FF方式）の暖房装置であり、以下の特徴を有する。

(1) 非常用に使用可能なコンパクトな暖房装置であり、暖房能力も大きい。

(2) 小型・軽量のため密閉性に優れる。

ここで、カセットヒーターを使用した暖房システムイメージを図9に示す。

表2 カセットヒーターの仕様

<table>
<thead>
<tr>
<th>暖房方式</th>
<th>FF（強制給排気）方式</th>
<th>暖房能力</th>
<th>12.8kW</th>
<th>温度設定</th>
<th>22℃</th>
<th>消費電力</th>
<th>最大250W</th>
</tr>
</thead>
<tbody>
<tr>
<td>尺寸（長×幅×高）</td>
<td>約4,100mm×2,300mm×2,270mm</td>
<td>乾燥重量</td>
<td>約340kg</td>
<td>基本構造</td>
<td>排気・換気室</td>
<td>便器</td>
<td>レイロー（丸洗、直式タイプ）</td>
</tr>
<tr>
<td>尿湿排泄方式</td>
<td>空気排泄方式</td>
<td>尿湿処理方式</td>
<td>ガスタービン排出機の排気に利用した熱風乾燥乾化方式</td>
<td>尿湿処理能力</td>
<td>約21L/m</td>
<td>人回換気量</td>
<td>約20人 * (20\text{L} / \text{人} / \text{分}) に相当 (24 \text{L} / \text{人} / \text{分}) と (30 \text{L} / \text{人} / \text{分}) の場合</td>
</tr>
<tr>
<td>大気連続使用回数</td>
<td>約1000人間</td>
<td>各タブレット容量</td>
<td>洗浄水</td>
<td>約60L</td>
<td>汚物リサイクル</td>
<td>約500L</td>
<td>燃料</td>
</tr>
<tr>
<td>洗浄水使用量</td>
<td>約350cc/回</td>
<td>便器</td>
<td>燃料 (\text{JIS 1号})</td>
<td>燃料使用量</td>
<td>約13L/h</td>
<td>タイム温度範囲</td>
<td>0℃～35℃（冷熱地仕様）</td>
</tr>
</tbody>
</table>

図10 ナイスレットの外観

「ナイスレット」では、尿湿を乾燥・炭化させるために必要な温度が、ダイナジェット2.6の排気温度よりも高いことから、排気温度を上げるためにダイナジェット2.6の熱交換器を除き、再生サイクルから単純サイクルへと変更している。ダイナジェット2.6に対する主な変更点は以下の2点である。

(1) 熱交換器の削除：熱交換器をなくし、排気温度をターピン出口温度まで高めた。

(2) 燃焼器の変更：燃焼負荷率、燃料流量の増加に対応して、燃焼器の大型化、燃料噴射弁の大流量化を行った。
システムの構成
乾燥トイレシステム「ナイスレット」のシステム構成図を図11に示す。尿尿は化粧台から真空搬送管により乾燥・炭化され炭化粒となる。炭化粒は、ダイナジェット2.6（熱交換器なし）の排気流に乗りサイクロンで分離された後、炭化流回収装置に紙パックに回収される。そして、排気流は、脱臭触媒で処理臭を大幅に下げた後、排出される。本システムでは、ダイナジェット2.6（熱交換器なし）本体の排気温度および脱臭触媒の温度が最適となるように排気弁の開度を制御して、尿尿の乾燥・炭化処理を実現している。

システムの特徴
前述したダイナジェット2.6の特徴の中で、本システムでは、特に排気弁を開きやすくなることで、以下の様々な特徴がある。
(1) 乾燥・炭化行程および排気流を直接吹きつけ方で処理できるため、処理能力が高い。
(2) 高温で乾燥・炭化させるので、雰囲気が完全に死滅し、後処理が簡単でクリーン。
(3) 高温の炭化粒をサイクロンで集塵することにより、炭化粒の紙パックでの回収を実現した。
(4) 大型高性能触媒を使用し、排気には処理臭がほとんどない。
なお、用途としては、①各種イベント時のトイレ、②災害時の緊急対策用トイレ、③観光地・リゾート地のトイレ、④大規模な工事現場、仮設トイレ等があげられ、代表的な実例としては、2001年に福島県で開催された「うつくしま未来博」での使用事例がある。

5. まとめ
小型、軽量、低騒音、超低振動、耐高圧ガス、ガスが利用可能なというメリットを生かし、世界最小のガスターピン発電機ダイナジェット2.6の普及に努めてきた。
また、ガスターピンの特徴である低圧式の排気流を活用したシステム商品の製品化についても引き続き進めていく予定である。

【参考文献】
1）中條ほか：日本ガスターピン学会国際会議, YOKOHAMA-IGTC'99, 1995
寒冷地域における屋外マイクロガスタービン
コジェネシステムの実証研究

*綾木 誠悟
横 佐知夫（北見工大院）
山田 貫延 石谷 博美 佐々木 正史（北見工大）

1. まえがき
近年、電力価格の低減を目指した電力の小売自由化、また地球環境保全および省資源の関心の高まりなどから分散型電源としてのマイクロガスタービンコジェネシステムが注目されている。本研究は、寒冷地におけるマイクロガスタービンコジェネシステムの性能評価として、機体を屋外設置してその性能を明らかにしたものである。また、環境保全の観点から有効活用が期待されている発泡スチロール材の油化燃料、いわゆるExpanded Polystyrene燃料（以下 EPS燃料）を使用した際の性能を明らかにした。

2. 実験装置および方法
本実験に用いたマイクロガスタービンの主要諸元を表1に、実験装置の概要を図1に示す。実験はパソコンによってマイクロガスタービンの運転を操作、制御し同時にデータの取り込みを行った。外部からの要電力を想定した発電出力は5kWの負荷抵抗器を5個組み合わせることで制御する。マイクロガスタービンから発生する排熱は排熱回収用ボイラに送られ水と熱交換されるか、ボイラへは送られず融雪槽へと送られる。

基本性能試験や排熱回収試験では一定時間ごとに大気温度と排熱回収用水の熱交換前の水温を測定し、排熱の大気排出温度を測定した。燃料に油およびEPS燃料を用いて実験を行い燃料による性能差を比較した。表2にEPS燃料の性状を示す。

融雪槽を用いた実験では5m³の融雪槽に雪あるいは水を入れ、融雪実験においては雪けるまでの時間を、水の熱利用実験では解雪時間を実験時間で行った。一定時間ごとに大気温度、融雪槽内の水の温度を測定し、排気管先端部、融雪槽入口部、大気排出部の3箇所で排気温度を測定した。

表1. マイクロガスタービン諸元（定格）

<table>
<thead>
<tr>
<th>Maker and Model</th>
<th>Capstone Model330</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Speed</td>
<td>96000 rpm</td>
</tr>
<tr>
<td>Output Power</td>
<td>29 kW (±1 kW)</td>
</tr>
<tr>
<td>Output Efficiency</td>
<td>25%</td>
</tr>
<tr>
<td>Fuel Consumption</td>
<td>11.5 L/h</td>
</tr>
<tr>
<td>Size (L/W/H)</td>
<td>1924 × 762 × 1518 (mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>405 kg</td>
</tr>
</tbody>
</table>

図1 実験装置概要

表2. 燃料性状

<table>
<thead>
<tr>
<th>Units</th>
<th>Lower Heat Value</th>
<th>Density</th>
<th>Sulfur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mj/kg</td>
<td>g/cm³ (15°C)</td>
<td>wt%</td>
</tr>
<tr>
<td>Kerosene</td>
<td>41.3</td>
<td>0.792</td>
<td>under 0.008</td>
</tr>
<tr>
<td>EPS Fuel</td>
<td>40</td>
<td>0.92</td>
<td>under 0.001</td>
</tr>
<tr>
<td>Kinematic Viscosity</td>
<td>Cst (25°C)</td>
<td>0.792</td>
<td>0.92</td>
</tr>
<tr>
<td>Pour Point</td>
<td>°C</td>
<td>under -40</td>
<td>under -65</td>
</tr>
<tr>
<td>Composition</td>
<td>(CH₂)₃n</td>
<td>(C₄H₈)n</td>
<td></td>
</tr>
</tbody>
</table>

第31回ガスタービン定期講演会
講演論文集、2003.6（北見）
Download service for the GTSJ via 54.70.40.11, 2020/04/05.
3．性能評価

3.1 各燃料の基本性能評価

マイクロガスタービンの基本性能とコジェネレーション系としての性能を評価するため、マイクロガスタービンの排熱を排熱回収用ボイラで水と熱交換することで排熱の回収効率を求めた。また、各燃料の排ガス値も測定した。

3.1.1 排熱回収性能評価

各燃料での各電力出力における回転数、タービン出口温度と各効率の変化を図2に示す。このときの気温は15～28℃である。

図2を見ると回転数やタービン出口温度といった基本性能には燃料による違いは見られないが、EPS燃料は発電出力が15kWを超えたあたりから発電効率、排熱回収効率ともに点灯を下回る結果となった。回転数などの基本性能は同等で、後述する燃焼効率を見ても大きな違いはなかった。これはEPS燃料の生成プロセスによる発熱量のばらつきや成分構成の経時変化による発熱量の低下が考えられる。

いずれにしても、全体的な効率は点灯で70%、EPS燃料でも60%に達しておりコジェネレーションシステムとして高い効率を持つことが分かった。

3.1.2 排ガス測定

各燃料の発電出力毎における排ガス値の測定値と、測定したHC、COを元に燃焼室の燃焼効率を算出し、その結果を図3に示す。

燃料1kgを消費する際発生するHCは最大でも1gに満たない事があった。COは0.5g以下である、NOxの発生量は3gに満たず、2000年の大気防止法によるガスタービンのNOxの規制値が6.85g/kg-fuel相当であるから、本機が高い環境性を持つことがわかる。

燃焼効率は各燃料ともに98％以上の効率に達し、燃焼性に問題はないものと思われる。

3.2 寒冷地における性能評価

ここでは、寒冷地における適性の評価を前提にして、周囲温度の変化がマイクロガスタービンの性能に与える影響を明らかにするとともに、排熱を利用した融雪槽の実験を試みた。寒冷条件下において本機は燃料が点灯ならば-23℃での起動、運動が確認できた。EPS燃料では-20℃では起動はできなかったが点灯で起動しEPS燃料
に切り替えることで運転が可能であることを確認した。

3.2.1 気温が性能に及ぼす影響

発電出力を20kWとした時、周囲の気温に対応した圧縮機入口温度ガマイクロガスタービンの性能に及ぼす影響を図4に示す。

実験で一定のときタービンの実回転数は圧縮機入口温度15℃を基準にすると図中の線のように変化するものと予想される。実際には回転数は燃料によって気温が上昇するにつれて、予想回転数より高めに推移した。これは圧力損失等の影響と考えられる。

再生器出口温度も各燃料とも気温に依存して変化することがわかった。タービン出口温度は一定であるが、圧縮機出口温度が上昇し、交換熱量が低下するためと考えられる。

発電効率は各燃料とも気温が低下するにつれて向上することがわかった。これは気温が低下するにつれ圧縮機の駆動仕事が減るため考えられ、年間平均気温の低い寒冷地におけるメリットである。

3.2.2 全性能評価

周囲の気温が-15～-20℃と極めて低い条件下で全性能評価を行い気温の与える影響等について調べた。

このときの発電出力と基本性能の関係を図5に示す。各燃料とも発電量の増大に従って回転数は増加し、排ガス温度は上昇している。タービン出口温度は低下していき一定になり、発電効率は向上していく。全体的にはEPS燃料が灯油より発電効率が若干低下するが性能に大きな変化はなく、寒冷地におけるマイクロガスタービンの適用性が実証された。

3.2.3 融雪性能評価

降雪地域における、コジェネシステムの可能性として積雪を利用した融雪実験を行った。最良の性能を推定するために融雪槽に水を貯めて実験を行い熱利用効率も算出してみた。発電出力は10kW、25kWで行い、燃料に灯油を使用した。それぞれの発電出力でのヒートバランスを図6に示す。

熱利用実験は融雪槽の容積の70%まで水を貯め、水温変化を測定することで熱利用効率を求めたもので、融雪実験では融雪槽の全容積まで雪を入れ、実験開始時の雪の密度と温度から融雪効率を求めめた。熱利用効率は10kW、25kW共に30%程度となっている。だが、実際に融雪を行ってみると融雪効率は25kW
で25%程度だったが、10kWでは10%程度と効率が落ち込む結果となった。この原因は融雪槽の構造、発熱量の違いによる空気流量の差、実験時の気温にあると思われる。この融雪槽は槽内に排熱の通るパイプを設置し、パイプに雪が触れることで熱交換が行われ融雪される仕組みになっている。熱利用実験では槽内に水を貯めて行ったため熱交換はスムーズに行われたが、実際の融雪ではパイプに触れした雪は解けるものでパイプからの熱が届かない離れた場所で雪が固まって分布し、それ以上融雪が進まなかった。その一方で、今回実験ではパイプからの排気が直接雪に当たる部分での融雪が最も有効であることがわかった。なお、気温条件について見てみると、10kWでの融雪実験のときの気温は-14℃で、25kWでの融雪実験のときは-4℃であった。そのため気温が低い10kWの場合でも熱損失が増し、一部融雪効率が低下したものと考えられる。いずれにしても排熱を融雪に利用したとしても、総合的な効率は50%に達することがわかった。

図6 融雪槽実験のヒートバランス

4. サイクル解析
本マイクロガスタービンジェネリシスシステムにおいて、エンジン各要素の性能や各ステージにおける圧力、温度条件等はほとんど不明である。そこで実験で得られた計測値を元にサイクル解析を行った。

図7 マイクロガスタービンジェネリシスシステムのブロック図

まず、圧縮機性能については小型半流圧縮機の平均的な性能として図8のように予想した。図中●印は図9および図10に対応する運転点を示している。

空気流量Gₐは、融雪槽における水と排気の熱収支から求めた。これと計測した燃料流量Gₙから総発熱比αを求め、前述3.1の燃焼効率はこれと排気解析結果から計算した。Gₐおよびαの値を図9に示す。

次に各部の効率等を仮定して各ステージの温
度を推定し，最終的にタービン出口温度 T_5 が計測値と等しくなるまで仮定と推定を繰り返した。ただし，タービンハウジングから外部への熱損失，ステージ間の圧力損失は無視した。発電出力に対する T_2, T_3, T_4 の推定値を図 10 に示す。
圧縮機出口温度 T_2 が発電出力が大きくなると共に圧力比が大きくなるため単調に高くなる。
燃焼器入口温度 T_3 が部分的な出力で高めならばタービン出口温度と空気流量に依存するためである。
タービン入口 T_4 は発電出力が大きくなるにつれて単調に温度が高くなるという解析結果となった。

5. 結論
寒冷地においてマイクロガスタービンジェネリションにEPS燃料の適用性実証試験を行った結果，以下の結論を得た。

（1）EPS燃料は生成プロセスや試験変化によって発熱量はながらつがる可能性があるがマイクロガスタービンにおいて燃焼効率，排気のいずれの面からも高い適用性を有する。

（2）寒冷地でのマイクロガスタービンの使用は，性能が向上するメリットがある。

（3）排熱を融雪に用いても，融雪方法などを考慮することで総合的に50％に達する効率を得ることができる。

（4）測定したデータからサイクル解析によって，詳細が明らかになっていない性能を推定することができる。

参考文献
1）佐々木，排気規制の動向（規制値単位換算法），ガスタービン学会誌 23-89，(1995)，p28

2）須之部 ほか，ガスタービン，(1967)，p70，共立出版

3）加藤・高村，CGTの圧縮機の性能向上に関する研究，自動車研究，第 19 巻第 7 号，(1997)，p240
小型リヒートガスタービンについての検討

*塩崎典彦（産業技術総合研究所）
古谷博秀（産業技術総合研究所）
高橋三雄（産業技術総合研究所）

1. まえがき

地球環境の観点から二酸化炭素の排出を抑えることが期待されている。内燃機関における対策としては、燃料の変換とともにより効率が高いシステムの使用が効果的である。ガスタービンの効率を向上させる手法としては、要素の効率を高める以外に様々な方法がある。例えば、タービンのエンジン温度の向上、圧力比の向上、熱の再生などである。大型のシステムでは、いずれの手法も可能であるが、小型のシステムでは、冷却構造の採用が難しいため、タービンのエンジン温度の向上は困難であると考えられる。リヒートガスタービンサイクルは高圧力比にすることで、高温化と同様に出力、効率の向上が得られる。しかし、小型のガスタービンで高圧力比にすると、タービン翼のサイズが小さくなる。一般に小型の圧縮機やタービンはクリアランスの問題があり、効率が低下してしまう。このため、小型のガスタービンにリヒートガスタービンサイクルを適用しても、効率向上がさほど期待できない。

現在、マイクロガスタービンにおいては、熱交換器による熱再生によって効率を向上させている。これは、排熱により空気を予熱し、燃料を節約していることになる。このことをエクセルギーの観点で考えてみる。高質のエネルギーを持つ燃料を燃焼して熱エネルギーに変換することは、本質的にエクセルギーの減少を招く。熱エネルギーは低温ほどエクセルギーの割合が高くエネルギーの質が高いので、低温から高温の空気まで燃焼で加熱すると、低質のエネルギーで十分な加熱を高質のエネルギーで得ることになり、エクセルギーの損失が大きくなる。排気による熱再生で空気を予熱すれば、低温での加熱を低質のエネルギーで行うことになり、エクセルギーの質の低下を小さくとどめ、エクセルギーの損失を小さくできる。その結果、マイクロガスタービンでは効率を高めていると解釈できる。

一方、蒸気タービンでは、負圧まで膨張させることで高出力と高効率を得ることができる。また、Graz サイクル(1)や WE-NET の水素燃焼タービン(2)ではガスタービンと蒸気タービンの作動媒体を水蒸気で共通化しており、最高圧力の割に高い圧力比を達成している。ガスタービンは燃料をツールとした場合には(3)(4)，CO₂が作動媒体に含まれるため、負圧の CO₂を排熱するために CO₂圧縮機が必要となり、その動力だけ効率が低下するが、負圧まで膨張させる効果が大きく、システム効率は高い。

同様に水蒸気以外の高温ガスを作動媒体とした場合でも負圧まで膨張することで出力が得られることは、既に知られている(5)(6)(7)。さらにガスタービンと逆ブレトンサイクルを組み合わせたミラーマスタンプ(8)(9)(10)(11)によりシステム効率を大きく改善できることが示されている。

図1 低品質熱エネルギーによる熱再生の概念
これは簡便化して考えると、システムの最低圧力を大気圧以下にすることで、最高圧力を従来のガスタービンのまま、圧縮を拡大する手法と考えることができる。ただし、排気のために圧縮機は必須であり、前述のシステムのように作動媒体が水蒸気を主体としたものではないため、排気量は多く圧縮機圧力も大きくなる。このため、圧縮比拡大による全効率向上効果と排気圧縮機圧力による効率低下の影響とのバランスで効率向上の程度が決まる。したがって、中間冷却による圧縮機圧力の低減は、システムの最適な最低圧力に大きな影響があると考えられる。

以上のことから、リヒートガスタービンサイクルにおいて負圧までの膨張を取り入れることで、最高圧を抑えること、効率向上を図る可能性がある。ただし、これまで提案された逆ブレイトンサイクル等は大型のガスタービンを想定したものが多く、圧縮機やタービンの断熱効率が高いため、負圧側の圧力比増大の効果が大きいが、小型のシステムでは圧縮機や圧縮機の断熱効率を低くすため負圧側の圧力比増大に伴う効率改善の程度は小さくなる。また、ミラーガスタービンである程度の効率向上が図られるのに対し、再熱を単純に行てもタービンの排気温度が高くなって負圧側の圧縮機圧力が増えてしまい、逆に効率低下を招きかねない。したがって、再再生との組合せは必須となる。著者らは、小型ガスタービンにリヒートガスタービンサイクルと再再生を適用して効率を図る方法を検討し、その可能性を見出したので、報告する。

２．検討サイクル及び検討方法

検討したサイクルを図2に示す。(a)はマイクロガスタービンで再生サイクルを用いている。(b)はミラーガスタービンで熱再生を付け加えている。ただし、本来のミラーガスタービンに採用されている中間冷却は省略されている。(c)は小さなリヒートガスタービンで、(b)との第一の相違点は再熱用の蒸気発生器である。また、再生を考えると、熱交換器より排気の熱で空気の予熱するだけでは不十分である。なぜなら、圧縮機により加圧空気の温度は既に上昇しているため、熱交換器だけでは、熱回収が十分とはならない可能性がある。そこで、水蒸気を用いて排気の熱をより多く回収することを考えた。(d)、熱交換器では排気を十分に冷却できないと考え、(e)ともに水冷による蒸発器を設けた。(f)、(g)ともに負圧側の圧縮機中の中間冷却を行っているが、中間冷却により効率向上することは既に明らかであるので、今回の検討では簡便のため、省略した。なお、圧縮機圧力の削減に効果のある圧縮機への水噴射についても検討した。

サイクル計算には、プロセスシミュレーターHYSYS3.01を用いた。表1のように基準条件を設定した。発電機やインバータの効率は仮定せず、軸出力でシステムの効率を検討した。小型のガスタービンをベースとして正圧側のシステムを構成するのを考え、圧縮機出口の圧力を0.35MPa、高圧側のタービン出口圧力を0.106MPaとした。つまり、マイクロガスタービンと正圧側の部分の共用化を図ることを想定している。小型リヒートガスタービンには正圧側と負圧側の2システムがあるので、出力はマイクロガスタービンの2倍程度となるが、それが100kW以下となると仮定し、表1の条件を基準としてサイクル計算を行った。さらに、圧縮後の空気中に水蒸気又は水を噴射することにより、出力増大と効率向上をねらっているが、基準条件では再生器2内で冷却水が気化して始めることで水の一部を取出して、残りを完全に凍結させて水蒸気で噴射することにした。再生器2は高水蒸気圧送しの水蒸気と空気で分けた二つの熱交換器から構成されると近似した。したがって、この2つの熱交換器は設定した温度効率の上限値にそれぞれが近づくように供給水流量、取り出し水流量を調整した。凝縮器では、水を噴射して排気を冷却することを。供給する水が多いほどシステムの効率が高まるが、供給が増えるほど、効率は上昇の割合が少なくなるので、シス
表1 計算条件（基準）

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>入力気体温度</td>
<td>288K</td>
</tr>
<tr>
<td>供給空気温度</td>
<td>60%</td>
</tr>
<tr>
<td>タービン断熱効率</td>
<td>82%</td>
</tr>
<tr>
<td>压縮機断熱効率</td>
<td>75%</td>
</tr>
<tr>
<td>燃焼器圧力損失</td>
<td>3%</td>
</tr>
<tr>
<td>熱交換器圧力損失</td>
<td>3%</td>
</tr>
<tr>
<td>熱交換器温度効率</td>
<td>85%</td>
</tr>
<tr>
<td>タービン入口温度</td>
<td>1173K</td>
</tr>
<tr>
<td>機械効率</td>
<td>95%</td>
</tr>
<tr>
<td>压縮機出口圧力</td>
<td>0.35MPa</td>
</tr>
<tr>
<td>水ポンプ1出口圧力</td>
<td>0.4MPa</td>
</tr>
<tr>
<td>高温水圧力</td>
<td>0.388MPa</td>
</tr>
</tbody>
</table>

図3 低圧側タービンの圧力比の影響
テムの供給空気に対して、7.58 倍の水を供給するものとした。この場合、基準条件では 15℃の冷却水供給に対して、20℃前後のドレインが得ることになる。ただし、この温度は運転条件によっては変化する。

3. 計算結果

本小型リヒートガスタービンでは低圧側タービンの膨張比を大きくとると、低圧側タービンの出力が増大するが、排気を行うため負圧側の圧縮機の動力も増大する。このため、システム効率に対して、最適な圧力比がある。そこで、低圧側のタービンの圧力比に対する効率の変化を求めた。図 3 の○のように圧力比に対する熱効率の変化は緩やかで、圧力比が 2.7 前後でピークとなる。このとき、低圧側タービン出口圧は 0.038MPa であり、これを基準条件として、以後の解析を行った。なお、このときの高温水の熱出力は図 3 の○のようになっている。0.388MPa で 140℃前後の高温水で発電の半分ほどの熱出力があり、圧力比が小さいほど大きい。この状態では、総合出力は 50%台であり、コーディネートとしては低レベルである。ただし、負圧側の圧縮機の排気からさらに熱回収が可能であるので、更に高出力をねらうことは可能である。つまり図 3 の熱出力は、熱出力の最大値ではなく、高効率を得るには少なくともこれだけの熱出力分の熱回収が必要であることを意味している。

熱交換器の温度効率が高いほど、図 4 のように小型リヒートガスタービンの効率が高まり、熱出力も増大する。マイクロガスタービンに比べるとシステム効率が高いものの、温度効率に対する効率向上の程度が小さい。さらに温度効率が 90%以上では、再生器 2 内のビンチポイント温度差が小さくなっている。この図では 10K の温度差まで許容しているが、これが制約条件となり、効率の伸びはさらに抑制される。言い換えれば、本小型リヒートガスタービンでは、熱交換器の数が多いものの、温度効率が低くても熱再生の効果が大きく得られており、熱再生の効果は頭打ちに近い。一方、マイクロガスタービンは熱交換器の性能向上により効率向上の余地がある。

タービン入口温度の向上により、システム効率が向上するが、小型のタービンシステムでは冷却構造を取り入れるのが難しいため、タービン入口温度は 1200K 前後である。しかし、将来、
タービンのセラミックス化が実現されれば、マイクロガスタービンでも1600K程度のタービン入口温度が想定できる。そこで、タービン入口温度の上昇に対する効率向上を調べた結果を図5に示す。マイクロガスタービンに対して、温度上昇とともに効率の差は拡大し、1273Kで約7%高い効率を示し、1573Kでは10%程度高い効率となる。タービン入口温度の上昇に伴い、最高効率となる圧力比も変化するので、圧力比を変えるとより高い効率が得られる。この場合、マイクロガスタービンの方が圧力比変化に対して敏感であり、効率改善の程度が大きい。その結果、1573Kでも両システムの効率の差は7%程度となった。

図6に低圧側タービン入口温度による効率の変化を示す。正圧側のタービン入口温度は1573Kとする。低圧タービン入口温度が上昇すると効率が向上するが、正圧側のタービン入口温度とともに上昇した場合に比べると、変化が小さい。1277Kで再熱用の低圧燃焼器への燃料供給は0となるが、同じ圧力比のマイクロガスタービンと比較すると、効率が高く、負圧のタービンシステムが効率を稼いでいることがわかる。水蒸気噴射をやめると、再熱ありのミラーガスタービンと考えることができると、その場合よりも本小型リヒートガスタービンは効率が高く、水蒸気噴射による熱再生が効率向上に寄与していることがわかる。

図7に圧縮機への水噴霧供給による空気冷却の効果を示す。比較のため、マイクロガスタービンでも同様の水噴霧供給を行ったものとして効率を示す。水供給に伴い、効率が上昇するが、その効果はマイクロガスタービンの方が大きい。特に、本小型リヒートガスタービンでは1%を超えると、ピンチ温度差が小さくなり、効率向上の効果が低下する。

4. まとめ

負圧までの膨張と熱再生を用いた小型リヒートガスタービンについて、マイクロガスタービンの効率を検討した結果、サイクルが成立する可能性及び適用した熱再生技術（例えば水噴射と蒸気注入）の効果が示された。この小型リヒートガスタービンの熱効率はマイクロガスタービンよりも7%高くなった。
参考文献

(1) Jericha, H. and Starzer, O., “Steam Cooled Hydrogen/Oxygen Combustion Chamber for the
High Temperature Steam Cycle”, Proceedings of 19th International Congress on
Combustion Engine, CIMAC, G20,(1991)

(2) 電力中央研究所; 平成 8 年度成果報告書「水素利用国際クリーンエネルギーシステム技術
(WE-NET)サブタスク 8 水素燃料タービンの研究開発(1)最適システムの評価」, NEDO- WE-
NET-9681, 新エネルギー・産業技術総合開発機構, (1997)

(3) Jericha, H. and Fesharaki, M., “The GRAZ CYCLE –1500°C Max Temperature Potential

(6) 大谷浩, 金子憲一, 赤岸隆樹, 山本清大, 藤井紘一, 「逆ブレイトンサイクルによる排熱回収」,

(7) Vermes, G., Barta, L.E. and Beer, J.M., “Low NOx Emission From an Ambient Pressure
Diffusion Flame Fired Gas Turbine Cycle (APGC)”, ASME Journal of Engineering for Gas

(8) Tujikawa, Y., Otani, K., Kaneko, K. Watanabe, T. and Fujii, S., “Conceptual Study on MGT
(Mirror Gas Turbine) Cycle”, Proceedings of International Gas Turbine Congress 1999 Kobe,
pp. 405-410 (1999)

(9) Tujikawa, Y., Otani, K., Kaneko, K. Watanabe, T. and Fujii, S., “Conceptual Recovery of
Exhaust Heat from a Conventional Gas Turbine by an Inter-Cooled Inverted Brayton

(10) Fujii, S., Kaneko, K., Otani, K. and Tsujikawa, Y., “Mirror Gas Turbines: A Newly

(11) 金子憲一, 大谷浩, 近藤吉孝, 藤井紘一, 「鏡面ガスタービン(MGT)利用した LNG 低温エ
小型ガスタービン直結用発電電動機

高橋 则雄、橋場 豊、霜村 英二、*橋立 良夫、新 彰憲（（株）東芝）

1. まえがき

近年の永久磁石材料開発、スイッチング素子開発の進展を背景に、永久磁石を回転子の巻き目で用いた高速発電電動機の開発が、海外及び日本国内で進められている。従来のガスタービン発電装置がないコンプレッサでは、減速機を介して発電機、または電動機に接続されているが、この発電電動機を高速化し、タービンに直結することができれば、機器の大幅な小型化が可能となる。東芝では、200(kW)・53,000(min⁻¹)の永久磁石発電機の開発を進めており、その概要を紹介する。

2. 高速発電電動機の実績

最近の高速回転機の市場調査によると、高速発電電動機の実績は、横軸を発電電動機容量、縦軸を回転数として図示すると図1となる。これまでに、数百 kWクラスの高速発電電動機は、主に高速コンプレッサーの直結駆動用モータとしての開発が中心であったが、最近ではマイクロガスタービン(MGT)の発電機として100(kW)以下の容量帯のものが開発されている。

全体傾向としては、回転子構造の制約から高速回転となると、大容量が製作しにくくなり、高速回転になるほど容量が小さくなること、100(kW)以下の容量帯では、発電機直結型マイクロガスタービンの登場で、これまでの実績の容量上限を超えた発電機が開発されている事である。さらに、300(kW)クラスのガスタービンに直結出来るような高速発電機は開発されていないことが判る。

3. 試作機の概要

高速回転では、給電プラグを必要とする界磁巻線方式の適用が困難であるため、試作機では永久磁石を界磁に利用する永久磁石発電機を採用している。この方式は、界磁に電力を供給する必要が無くから、高効率化を図る上でも好ましい。表1に試作機の開発仕様を示す。また、図2、図3に試作機の基本構成を示す。

![図1 高速発電電動機の実績](<image-url>)

<table>
<thead>
<tr>
<th>表1 試作機の開発仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>構成部位</td>
</tr>
<tr>
<td>高速発電機</td>
</tr>
<tr>
<td>電動機</td>
</tr>
<tr>
<td>ステータコイル</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

![図2 試作機の基本構成（軸断面）](<image-url>)

![図3 試作機の基本構成（半径断面）](<image-url>)
3.1 ロータ構成

永久磁石をロータ表面に配置する場合、高速での回転遠心力に耐える構造が必要である。一般的に、パイロードスペック、あるいは樹脂成型などが飛行防止に用いられるが、ロータの周速が200(m/s)を超える高速回転では、永久磁石の遠心力に耐え得るものではなく、また磁石をロータ鉄心内に埋め込む方式であっても、鉄心に使用される電磁鋼板の強度面から大きな制約を受ける。この問題を解決する方式として、軽量、かつ高強度の炭素強化繊維プラスチック（CFRP）、または高強度金属材の保持環による永久磁石保持方法が考えられる。試作機では、保持環材質の製造性（特に韌性）、入手性、および耐熱性の観点から、発電鉄心、信頼性を総合的に考慮して、保持環材料に高強度の析出硬化系ステンレス鋼を採用している。また、この析出硬化系ステンレス鋼は、低亜磁束密度の磁気特性を有しており、保持環はロータ鉄心の一部となって、実質的なエアギャップを小さくすることが可能となり、電気出力を低下させることなく、永久磁石を保持することができる。

保持環とロータシャフトは、溶接により強固に結合されており、高速回転による遠心力場においても、強度的に十分耐え得ることを確認している。なお、組立性を重視して保持環とロータシャフトとを焼結め、あるいは圧入によって一体化する方法も考えられるが、この場合、ロータ剛性は、保持環の剛性を十分活用できず、ロータシャフトのみの剛性に頼る構造となる。一方、溶接構造では保持環もロータの剛性要素となるため、剛性を向上させることができる。従って、ロータ固定振動数（危険速度）は、定格回転数に対し、より高い回転数で離調することが可能となっている。

3.2 ステータ構成

ステータを設計する上で、電気特性は勿論のこと、冷却特性が重要な項目となっている。特に高速回転機では、ステータスロットの配列に起因した高調波磁束がロータ表面に鎮交すると大きな高電流損失を生じてロータは熱する。ロータの発熱により永久磁石が高温にさらされると、永久磁石は熱減磁し、発生する磁束量が大幅に低下してしまう可能性がある。この表面損の原因となっているスロット高調波を極力小さくするため、試作機では全黒スロットを採用している。

ステータコイルを流れる電流も高周波となるため、表面効果による交流抵抗の増加、漏れ磁束によるコイル導体の漏電流増大の可能性もある。この高周波損失を低減するためにコイル導体に極細の絹繊線を採用し、漏れ磁束に対する鎮交磁束断面積を小さくして損失を低減している。

また、発電装置の運転・保守を容易にするため、空冷冷却の適用を目指して、ステータはステータ背面をガスタービンの排気空気に利用冷却し、ロータは同じくガスタービンの排気空気（または圧縮機からの抽気）をステータ内周とロータ外周との間のエアギャップ部に流す設計を行なっている。但し、今回の試作機では、試験装置の制約（冷却空気流量、構造上の制約）から、ステータ冷却には水冷ジャケット方式を併用している。

ステータ温度の設計上限値は絶縁材の耐熱温度により決まり、これを越えないよう冷却設計を行なう必要がある。ステータの冷却性能に大きく影響する要素として、ステータ巻線仕様、エアギャップ長、スロット数等が挙げられる。また、これらの要素は、電気性能にも大きく影響することから、電気的な出力、損失等の特性にも配慮する必要がある。従って、これらの要素をパラメータに検討を行ない、電気性能、冷却性能の最適値を見出し、試作機の基本設計を行なっている。
4. 抵抗負荷回転試験

試作機の効率、温度上昇値を推定する上で必要な特性値（同期インダクタンス、損失など）を得るため、抵抗負荷による試作機の高速回転試験を行なった。

4.1 試験装置

図4に示す構成の回転試験装置により、試作機の高速回転試験を実施した。高速回転試験装置は、駆動用インダクションモータ、增速ギア、トルク検出器を直列に接続し、駆動用インダクションモータを駆動するためのインバータ、及び增速ギアとで構成されている。負荷としては、抵抗負荷装置3相200(V)-100(kW)を用いている。図5に試験装置外観、図6に試作機外観、図7にロータ外観を示す。

試験方法として、駆動モータにより、無負荷の状態で回転上昇を行ない抵抗負荷を投入し、53,000(min⁻¹)で約1時間回転数を保持しヒートラップ試験を実施した。また、ヒートラップ後に部分負荷特性を測定した。

4.2 試験結果

抵抗負荷回転試験により、定格回転数53,000(min⁻¹)において、ほぼ発電出力100(kW)を達成し、この時の効率は92.3(%)となった。図8の電気出力特性、図9の温度特性（ステータコイル）では、試験実測値と解析値と比較を行なっている。電気特性実測値は、全負荷電流にわたって設計値（解析値）と良く一致している。また、ステータコイルの温度に関しては、スロット内、コイルエンド部ともに設計値（解析値）とほぼ一致しており、最大の温度であるコイルエンド部の温度上昇値は75.3(deg)となっている。

![図8 電気出力特性](image)

![図9 温度特性（ステータコイル）](image)
5. 200(kW)定格負荷での性能推定

抵抗負荷回転試験データと解析を基に、定格における試作機性能を推定した。電気出力、ステータコイル温度については、試験結果と解析値が良く一致していることから、電磁解析、温度解析により求め、不明確な損失に関しては、試験結果から定格負荷状態を推測し、試作機の基本性能を推定した。表1に定格時のにおける試作機の性能（推定）を示す。

この結果、最大出力200(kW)時の効率は95(%)、ステータコイル温度はH種絶縁の許容温度範囲であると推定結果を得た。

表1 定格時のにおける試作機の性能（推定）

<table>
<thead>
<tr>
<th>構成部位</th>
<th>項目</th>
<th>諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>高速発電電動機</td>
<td>定格出力</td>
<td>200(kW)</td>
</tr>
<tr>
<td></td>
<td>定格回転数</td>
<td>53,000(min⁻¹)</td>
</tr>
<tr>
<td></td>
<td>定格電圧</td>
<td>393(V)</td>
</tr>
<tr>
<td></td>
<td>効率</td>
<td>95(%)</td>
</tr>
<tr>
<td></td>
<td>外形寸法</td>
<td>φ320 × L582 (mm)</td>
</tr>
<tr>
<td>ステータコイル</td>
<td>最大温度</td>
<td>H種絶縁</td>
</tr>
<tr>
<td></td>
<td>冷却空気</td>
<td>許容温度未満 (<180(℃))</td>
</tr>
<tr>
<td></td>
<td>入口温度</td>
<td>40(℃)</td>
</tr>
</tbody>
</table>

6. まとめ

200(kW)-53,000(min⁻¹)の高速発電電動機を試作し、抵抗負荷回転試験を行った。この試験結果を基に、インバータ制御により200(kW)出力運転を実施した場合の電気、冷却特性を推定した結果、効率は95(%)、最大温度はH種絶縁許容温度以下となり、高速発電電動機の成立性を確認できた。今後、インバータ制御による最大出力運転で検証を実施する予定である。

本研究は、新エネルギー・産業技術総合開発機構 業エネルギー有効利用歴史技術先端研究開発「多様なニーズに対応するフレキシブルタービンシステムの研究開発」の委託研究により、開発を行なったものである。

参考文献
[1]エネルギー総合工学研究所,神戸製鋼所,東芝：「エネルギー有効利用歴史技術先端研究開発 多様なニーズに対応するフレキシブルタービンシステムの研究開発」,新エネルギー・産業技術総合開発機構(NEDO)2001年度報告書, 010006465
IM270-IHI-FLECS の開発

（石川島播磨重工業（株））*山本 誠二

Abstract

There is unbalance between steam and electric demand in operation of gas turbine co-generation system. Especially in summer, demand of electricity increases, and steam demand becomes small. But engine output power decreases, because of high environment temperature. On this condition, IM270-IHI-FLECS that enhances the engine output power by injecting surplus steam to the combustor can optimize those demands.

1 はじめに

IM270 は石川島播磨重工業(以下 IHI)で独自開発した 2000kW 級ガスタービンである。販売開始から 7 年経過しイージェネレーション用ガスタービンエンジンとして順調に販売を伸ばしてきている。このようなイージェネレーションの導入を検討するユーザーの中には、蒸気需要の変動が大きく特に夏場において蒸気が余る場合があり、より効率的な運用が出来るエンジンが求められるようになってきた。石川島播磨重工ではこのようなニーズに対応するべく、熱電気負荷バランスを可変とした 4000〜6000kW 級ガスタービン IM400-IHI-FLECS を既に商品化している。今回この IM400-IHI-FLECS で培われた技術を IM270 に応用し、同様な熱電気負荷バランスを可変とした IM270-IHI-FLECS を開発した。

2 IM270 について

IM270 の基本仕様は表 1 のとおりである。都市ガス燃料による燃焼器には東京ガス(株)との共同開発によるダブルスワール型燃焼器を、また灯油燃料および LPG 燃料向けには IHI 開発によるマルチプル型燃焼器(図 1)を採用している。これらの燃焼器では希薄な混合技術を採用し、低 NOx 排出を実現している。

表 1 IM270 基本仕様

<table>
<thead>
<tr>
<th>種類</th>
<th>1 軸型単純開放</th>
</tr>
</thead>
<tbody>
<tr>
<td>発電機端出力</td>
<td>2000 kW</td>
</tr>
<tr>
<td>蒸気発生量</td>
<td>6t/h</td>
</tr>
<tr>
<td>発電機機械効率</td>
<td>25.5%</td>
</tr>
<tr>
<td>NOx 排出量</td>
<td>20ppm以下</td>
</tr>
<tr>
<td>(16%O2)</td>
<td>30ppm以下</td>
</tr>
<tr>
<td>压力比</td>
<td>12</td>
</tr>
<tr>
<td>排気温度</td>
<td>560℃</td>
</tr>
<tr>
<td>燃料</td>
<td>灯油、都市ガス、LPG</td>
</tr>
</tbody>
</table>

第 1 図ダブルスワール燃焼器とマルチプル燃焼器

第 3 回ガスタービン定期講演会
講演論文集: 2003. 6, (北見)
Download service for the GTSJ via 54.70.40.11, 2020/04/05. —35—
3 IM270-IHI-FLECSの開発目標と技術課題
3.1 IM270-IHI-FLECSの開発目的

3.1.1 出力
IM270は15℃以下で2000kWの発電能力を持つガスタービンエンジンであるが、夏場においては吸気温度の上昇により出力が低下する。一方、夏期においては空調機の使用などにより使用電力が増加することが多い。そこでこの出力の低下を補う大気温度35℃以上になっても2000kWの出力が得られるようにドライ定格出力特性（図2、図中破線）に対し、25%の出力増加を目標とした。

3.1.2 噴射蒸気量
定格点付近の圧縮機の圧力比を等回転数作動ラインとセンサラインの組み合わせを図3に示す。発電用1軸ガスタービンは発電機と直結しているため負荷運転中は常に回転数一定で運転される。ガスタービンに蒸気噴射を行うと、蒸気によるタービン流量増加のため圧力比が高い方に移ることになる。すなわち図3に示すとおり蒸気噴射なしの状態（図中A）から作動点は圧力比の高い方に移動する（図中B）。IM270-IHI-FLECSではこのセンターサーブ限界までの余裕を考慮し定格蒸気噴射量は2500kg/hとした。

3.1.3 開発目標
IM270蒸気噴射型の開発にあたり開発目標を表2のとおりに定めた。IM270-IHI-FLECSの噴射蒸気はシステムの簡略化を計るために饱和蒸気とした。

3.2 技術課題
この目標を達成するために次のような課題をクリアする必要があった。
(1) 燃焼効率の確保と低NOx特性の両立
(2) 耐久性の維持
(3) 圧縮機サークルとモーターの確保
(4) タービン翼パラレルの検討

表2 蒸気噴射実験基本仕様

<table>
<thead>
<tr>
<th>出力</th>
<th>2500kW</th>
<th>15℃以下</th>
</tr>
</thead>
<tbody>
<tr>
<td>蒸気噴射量</td>
<td>2500kg/h</td>
<td></td>
</tr>
<tr>
<td>発電機効率</td>
<td>28.0%以上</td>
<td></td>
</tr>
<tr>
<td>燃料</td>
<td>燃油、都市ガス</td>
<td></td>
</tr>
<tr>
<td>噴出NOx</td>
<td>20ppm以下</td>
<td>都市ガス燃料</td>
</tr>
<tr>
<td>(16%O2)</td>
<td>30ppm以下</td>
<td>燃油燃料</td>
</tr>
<tr>
<td>噴射蒸気</td>
<td>飽和蒸気</td>
<td></td>
</tr>
</tbody>
</table>
3.2.1 燃焼効率の確保と低 NOx 特性の両立

希薄予混合技術による燃焼器では、安定燃焼領域が狭いため燃料流量に応じて噴射ノズルの本数を制御するステージングを行っている。そのため蒸気需要が大きい時期も考慮し、ドライ制御の最大負荷までは蒸気噴射無しでの運用とすることで低 NOx 燃焼器の利点を生かした。また蒸気噴射中に

3.2.2 耐久性の維持について

IM270 の運用では、発電機出力による制限と排気温度による制限を行っている。このどちらかが制限されても、出力保証を維持しつつ、エンジン耐久性を維持できることを目的としている。蒸気噴射運用においては、排気温度制限（図 5、図中破線）はそのまま出力制限のみを増加させることになる。定格蒸気噴射量時には出力増加のために燃料が増加しても、噴射蒸気により排気温度が抑えられタービンの耐久性に影響を与えない。しかし蒸気噴射量が少ない場合には、出力制限を超えるだけでは図に示すように DRY 運用のとき場合に比べ排気温度が上昇することとなり、蒸気噴射しないエンジンに比べ耐久性を下げる可能性がある。そこで蒸気噴射中の排気温度制限値（図 6、図中破線）を下げる制御を導入した。このときの排気温度制限値は、蒸気噴射前の定格出力運転時ににおけるガスタービン排気温度をとしている。この制御方法の導入により、蒸気噴射中の排気温度の上昇を抑制することが可能となり蒸気噴射しない場合と同じ耐久性を維持できるようになった。

図 4 蒸気噴射中のバイロット燃料流量
および燃料噴射弁制御

図 5 出力制限だけの場合の
部分蒸気噴射時排気温度上昇

図 6 蒸気噴射時排気温度制御
3.2.3 サービスジャーニー制御について
IM270 は開発当初より蒸気噴射に対応可能な圧縮機を採用してきた。しかし通過のとおり、通常ガスタービンは蒸気噴射量を行うとサービス限界に近づくことになる。この兆候はエンジンが劣化してきた場合には、同じ出力を得るために必要となる燃料が多くなるためさらに顕著となる。そこで図7に示すように、修正回転数による圧力比の制限値を設けることで、エンジンが劣化してきた場合でもサービスジャーニーの確保できる燃料制御を実施している。この制御方法の採用により常に最大効率での運用が可能な制御を採用している。

3.2.4 タービン翼フラッターの検討
蒸気噴射を行った場合、タービンを流れる流量が増加し空力による振動（フラッター）が発生することが予想された。このフラッターは翼全体が振動することで翼の破損につながる恐れがあるためタービン翼の振動解析結果からタービン翼間にダンバーを入れることで回避できることができた。さらにエンジン実証試験ではタービン動翼にひずみゲージを貼付しテレメトリーシステムにより翼振動応答のモニターを実施し、全運用範囲でフラッターの発生がないことを確認した。タービン動翼の振動応答計測の様子を図8に示す。また耐久運転でも通年運用し、フラッターが発生していないことを実証した。

3.3 開発スケジュール
IM270 IHI-FLECSは、まず燃焼器の要素試験により灯油燃料および都市ガス燃料での蒸気噴射方法の検証を行った。さらに引き続き石川島播磨重工業 兵2工場ガスタービン発電所にて実証試験運転を行うとともにあわせて実運用耐久試験を行ってきた。開発スケジュールを図9に示す。

<table>
<thead>
<tr>
<th>IM270FLECS 開発スケジュール</th>
</tr>
</thead>
<tbody>
<tr>
<td>燃焼器要素開発</td>
</tr>
<tr>
<td>実証試験</td>
</tr>
<tr>
<td>耐久試験</td>
</tr>
</tbody>
</table>

図7 压力比制限
図8 タービン動翼振動計測
図9 IM270蒸気噴射開発スケジュール
3.3.1 燃焼器要素開発
(1) 燃油燃料蒸気噴射型燃焼器
燃焼器への蒸気噴射方法を図10に示す。
排熱ボイラーで発生した蒸気を燃料混合前の圧縮空気内に噴射する構造を採用している。1本のパイロット噴射ノズルと6本のメインノズルを有する構造で、蒸気は燃料噴射前の圧縮空気内へ噴射される。この燃焼器は蒸気噴射用のノズルを除き従来の油燃料燃焼器と同様形態とすることで部品の共通化を図っている。

(2)都市ガス燃料蒸気噴射燃焼器
都市ガス燃料への対応については、IM270標準都市ガス燃料燃焼器（ダブルスワラー型）への適用を目指した。しかし要素試験において燃料予混合型への蒸気噴射では燃焼効率が上がらず、消える発生する状況が見られたため、都市ガス燃料蒸気噴射燃焼器にもディーゼル燃料燃焼器と同じマルチプル型燃焼器を採用した。蒸気噴射用燃焼器では燃料噴射ノズルのみを交換することで、ディーゼル、都市ガス用に対応することが可能となり部品の共通化を図っている。図11に燃焼器の写真を示す。

3.3.2 実証試験について
IM270の蒸気噴射型の開発に当たっては、ディーゼル燃料での実証試験を行い引き続き都市ガス燃料での開発を進めました。図12に実証プラントのシステムをまた図13に実証耐久試験の様子を示す。
この実証試験によりディーゼル燃料、都市ガス燃料ともに稼動した開発目標を達成した。
4 耐久運転状況について
IM270 は 2002 年度末までに累計運転時間約
85,000 時間、始動回数約 3,800 回を達成している。
（非常用発電用を除く。）このうち蒸気噴射型に
ついては、2002 年 3 月より石川島播磨重工業呉 2
工場ガスタービン発電所にてまず石油燃料での商
用耐久運転を開始した。また 2002 年 6 月よりお
なじく当社、呉 2 工場発電所燃料の都市ガス化に
伴い、都市ガス燃料での耐久運転に変更し、耐久
性と信頼性の実証を行っている。2003 年 3 月末現
在で、蒸気噴射での累計運転時間は 2,000 時間以
上、始動回数は 200 回以上に達している。この間、
毎日起動停止（Daily Start Stop: DSS 運用）にて順
調な運用を行っている。耐久運転中の運用データ
t図 14 に示す。

5 まとめ
以上のように今回開発した IM270-IHI-FLECS は、
熱電気比率が変動するユーザーにとって経済的メ
リットの出やすいシステムとなった。今後は実運
用実績をベースにして更なる制御の改善や、他の
燃料に対応できるように適用範囲を広げていきたい。

6 参考文献
(1) 小林 英夫、津経 昭容、米澤 克夫、今村 龍三：「IM270、2000kW 級発電用ガスタービン
の開発」石川島播磨技報 1996 Vol.36 No.3
(2) 米澤 克夫、小林 英夫、今村 龍三、長 義守：「IM270 ハイジェネレーションシステムの
開発」石川島播磨技報 1998 Vol.38 No.5
(3) 山口 亨、宇治 茂一：「IM400-FLECS(Flexible Electric Cogeneration System)」石川島播
磨技報 1996 Vol.36 No.5

図 13 実証耐久試験プラント
図 14 実証耐久運転データ
既設コンバインドサイクル発電ユニットの熱効率解析

※ 辛田 栄一、高橋 敏（電中研）
笛尾 真一（中部電力）

1. はじめに
火力発電所からの二酸化炭素排出量は、我が国の二酸化炭素総排出量の約四分の一を占めるため、火力発電の高効率化は燃料コストの低減だけでなく、地球環境保全の見地からも重要である。これまで電気事業では、常に最新の技術を取り入れて火力発電の高効率化に取り組んできた。図1に示すように、火力発電設備の熟効率は年々向上し、特に、1980年代にコンバインドサイクル発電プラントが導入されて以来、急速に進展を遂げてきた。

ところが、近年、電力需要が伸び悩み中、新規の発電プラントの建設は減少傾向にある。また、規制緩和の進展により、発電コストの一層の低減が喫緊の課題となっている。このような情勢の中で、火力発電分野からの二酸化炭素排出量の削減と発電コストの低減を両立させるためには、既存の設備を最大限有効に活用することが重要である。

一方、中部電力中央研究所においては、IGCCや燃料電池など将来の発電システムの検討を効果的に行なうことを目的に「発電システム熟効率解析汎用プログラム」の開発を進めてきた。同プログラムは発電システム全体の熟物質収支バランス計算を効率よく行うことのできるものである。

このような背景のもと、中部電力㈱は同プログラムを既設火力プラントの熱効率解析にも応用可能と考え、今回、既設コンバインドサイクル発電ユニットの熟効率解析を行なうとともに、その活用方法について検討を行なった。

図1 対象としたプラントのシステム構成
2. 現状の熱効率管理における問題点

ガスタービンプラントは一般に大気温度などの影響を強く受けるため、機器性能などの経時的な変化傾向を把握することが難しい。さらに、図2に示したユニットの構成を示すが、このような一軸型のユニットでは、ガスタービンと蒸気タービンが直結されているため、それぞれの出力の配分を知ることも難しい。さらに、HRSG内の各部の状態も特に把握していっていない。このため、プラント全体の熱効率が低下した場合、現状ではその原因を特定することが非常に困難であり、熱効率改善の検討がユーザサイドでは十分に行なえないので現状である。

3. プラント全体の熱物質収支バランス計算に基づく熱効率解析

電中研で開発した「発電システム熱効率解析汎用プログラム」の特徴のひとつとして、様々な計算条件の設定に柔軟に対応可能な点が上げられる。そこで、実測値を入力値として機器性能などを算出するケースと、機器性能を入力値としてプラント性能をシミュレーションするケースの2通りの解析を行なった。

(1) 実測値ベースの解析

実測値基準の計算では、各部の温度や圧力などの実測値を入力値として熱物質収支バランス解析を行ない、各部の流量や入力点以外の温度、圧力、および各種機器の性能（断熱効率や熱損失率など）を算出する計算を行った。

(2) 機器性能ベースの解析

上記の実測値基準の結果得られた機器性能や大気条件などを入力値として、プラント各部の状態量やプラント全体性能を算出する計算を行った。

以上の結果、何れのケースに置いてもプラント熱効率に関する誤差は相対的に0.1%以下で算出可能であることを確認した。

4. 熱効率解析技術の活用方策の検討

以上の解析が可能となったことから、今後、以下のような活用方策が考えられる。先ず、実測値ベースの解析を行なうことにより、各機器の性能把握が可能となることから、機器毎の性能管理が可能となるとともに、実測値をもとに算出した機器性能ベースの解析で大気条件が基準条件の場合のプラント性能を解析することにより、大気温度の影響などを除外したプラント全体性能の経時変化を管理することが可能となる。さらに、機器性能を改善した場合のプラント性能をシミュレーションすることにより、より経済的なプラント補修計画の検討にも活用可能である。

5. おわりに

既設コンバインド火力の熱効率解析が可能なことが確認できたので、今後は、他のユニットへも対象を拡大するとともに、過去のプラント運転データを詳細に解析することによって計算精度の向上を図り、コンバインドサイクル発電プラントの運用に活用できるものとしていきたい。

引用文献
(1) 幸田、高橋、三崎「火力発電システム熱効率解析汎用プログラムの開発」火力原子力発電 No.556 Vol.54 pp.51-59、(2003年1月)
超高効率最適再燃型革新ガスタービン複合発電システム（MORITC）の検討

*森塚秀人、幸田栄一、渡辺和德 ((財)電力中央研究所）

まえがき

発電用大容量ガスタービン複合発電システムの高効率化の可能性について検討するため、現在開発されている1500℃級蒸気冷却ガスタービン複合発電システム、1300℃級再燃型ガスタービン複合発電システムをベースに、各種高効率化技術の効果を明らかにするとともに、メタン改質冷却方式とNOx還元型触媒再燃器を考案し、これらの技術を最適に組み合わせた超高効率最適再燃型革新ガスタービン複合発電システム(Maximized-efficiency Optimized Reheat-cycle Innovative Gas Turbine Combined-Cycle Power Generation System MORITC)を提案した。性能予測計算の結果、圧力比55、高圧タービン入口温度1700℃再燃型ガスタービンに超電臨界圧2段再熱推進回収蒸気システムを組み合わせた場合、複合発電効率60％以上（発電端高圧）の高い高効率が得られることを示した。

1. 発電用大容量ガスタービン複合発電システムの開発状況

発電用大容量ガスタービンを製造する重電メーカーはGE社（日立製作所、川崎製）、三菱重工業、アルストム社（川崎製）、ジェイ・モント（富士製電機）、である（括弧内は国内ライセンスメーカー）。わたが国には、主にGE社と三菱重工業のガスタービン複合発電システムが導入されており、平成15年6月現在、105台（非常用等は除く）のガスタービンが運転されている。

わたが国の発電用ガスタービンの研究開発は、旧関通産省工業技術院ムーンライト計画として昭和53〜60年度に実施された高効率ガスタービンプロジェクトにより開始された。これは、時を同じくして画期的な1300℃級2軸再燃型ガスタービンで、開発目標は出力100MW、熱効率55％（発電端低圧基準）であった。本プロジェクトはわたが国のガスタービン製造技術の向上に寄与したと評価されている（図1-1）。

事業用としては、昭和57年に東北電力㈱新潟発電所に三菱重工業（株）1100℃級ガスタービン（D型）複合発電システムが導入され、引き続き、東京電力㈱富津発電所等にGE社1100℃級ガスタービン（E/E A型）複合発電システムが導入された。その後、1300℃級ガスタービン複合発電システム（F/F A型）が開発され、中国電力㈱柳井発電所をはじめ多くの発電所に設置された。三菱重工業と東北電力㈱との共同開発により、1450℃級ガスタービン（G型）複合発電システムを開発し、平成11年東新潟発電所に設置された。引き続き1500℃級蒸気冷却方式ガスタービン（H型）を開発している。GE社でも1500℃級（H型）ガスタービン（図1-2）を開発し、アメリカで試運転中である。東京電力㈱では、同複合発電システムの導入を進めている。これらは全て単純型ガスタービンによる複合発電システムである。

それに対して、アルストム社（旧AB社）は1軸再燃型ガスタービンGT24/26（図1-3）を開発した。これは高圧力比圧縮機と独自の燃焼器技術により、1軸再燃型ガスタービンとして実現したもので、1300℃級で1500℃級単純型ガスタービンに匹敵する熱効率が得られている。

GE社、アルストム社のガスタービン複合発電システムの性能を表1-1、図1-4に示す。同じガスタービン入口温度なら、再燃型の方が熱効率的に有効である。
２．ガスタービン高効率化技術の検討

ガスタービン複合発電システムは、ガスタービン出口温度の高水化により、高効率化がはかれてきた。まず、ガスタービン出口温度の上昇による熟効率改善効果について検討した。再燃型ガスタービンにおいて、低圧タービン圧力比を2.1、低圧タービン人口温度を800℃に固定し、高圧タービンの段数を変えることにより、高圧タービン入口温度を1300℃から1700℃まで上昇させた場合の検討を行った。

図-5に高圧タービン入口温度に対するガスタービン効率、複合発電効率の関係を示す。同様に、ガスタービン全圧力比を55、高圧タービン入口温度を1700℃、ガスタービン出口温度を640℃に固定し、再燃器の設置段数を変えることにより低圧タービン入口温度を変化させた場合の検討を行った。図-6に低圧タービン入口温度に対するガスタービン効率、複合発電効率の関係を示す。図より、高圧タービン入口温度の上昇はガスタービン効率、複合発電効率を大きく改善するが、
低圧タービン入口温度の上昇は、大きな改善が見られないと。
次に、ガスタービン燃焼器に蒸気噴射する場合の熱効率の
改善効果について検討した。再燃型ガスタービンにおいて、
高圧タービン入口温度を1700℃、低圧タービン入口温度を
800℃に固定し、燃焼器に噴射する蒸気量（蒸気/燃料＝S/C）
を0～2まで増加させた場合の検討を行った。図7に蒸気
噴射量（S/C）に対するガスタービン効率、複合発電効率の関
係を示す。図より、S/Cを増加させるとガスタービン効率は
改善するが、複合発電効率は逆に僅かに低下し、蒸気噴射方
式はガスタービン効率の向上には効果がなく、複合発電効
率の向上には効果がないことがわかる。

3. 新冷却技術の検討
ガスタービンの高温化には、従来の冷却技術では、冷却を強化するために冷却媒体流量を増加させる
必要があり、高温化の効果が熱効率に反映されないと。熱効率改善には、燃料ガスに蒸されガスタービン内筒、
タービン翼等の高温部分の新しい冷却方式の検討が必要となる。ここでは、水蒸気メタン改質反応の吸
熱効果を利用した新冷却方式を考察し、この冷却方式を用いた燃焼器内筒、タービン静翼を提案した。
メタンを主成分とする天然ガスは水蒸気を加えると触媒下で水素とCO2に改質する。このメタン水蒸気
改質反応は吸熱反応であり、燃焼器や静翼の冷却に利用できる。このメタン改質冷却是従来の
蒸気冷却に比して少ない蒸気量で効果的な冷却が可能となる。
冷却媒体が水蒸気の場合、350℃～500℃における吸熱量が680kJ/kgH2Oに対して、メタン水蒸気改質反応
H2O+1/2CH4→H2+1/2CO2は吸熱反応(4580kJ/kgH2O低水基準)であり、反応が50%起れば、
2290kJ/kgH2Oの吸熱量がある。蒸気冷却の場合の冷却効果を次式流束Qsc(kW/m²)は、

Qsc=kG(T0-TBCB)=λB(TBCB-TH)=λM(TH-M1)=ks(TM1-TS)

kG:燃焼ガス熱伝達率、λB:燃焼ガス層の熱伝導率、λM:金属の熱伝導率、ks:蒸気熱伝達率(kW/m²K)、
T0:燃焼ガス温度、TBCB:燃焼ガス温度、TH:金属高温側温度、M1:金属低温側温度を表す。
燃焼ガスが1500℃の場合、Qscは500～600(kW/m²)となる。
メタン改質冷却方式は、ガスタービン燃焼器の間にメタン改質触媒層を設置することにより、金属層から熱を受けて層内でメタ
ン水蒸気改質反応が起こる。吸熱量をQMA(kW/m²)とすると、メ
タン改質冷却方式の熱流束QMEC=QSC+QMAは、蒸気冷却の
場合の約4倍となる。図8に新冷却方式の温度分布図を示す。
メタン改質反応には安価で活性の高いニッケル触媒をアルミナで担持した触媒が使用される。
メタン改質冷却を燃焼器内筒とタービン翼の冷却に適用した場合の概念図を図9、10に示す。
メタン改質冷却方式は優れた冷却特性を有すると期待されるが、部品の寿命（2〜4年）と等しい寿命を持つ長寿命触媒の開発が必要となる。

4. サーマルNOx低減技術の検討

希薄予混合燃焼によるドライ低NOx燃焼器によって、NOx排出濃度の低減が図られているが、燃焼温度が1500℃を越えると、予混合燃焼を用いてもNOx排出濃度は増加する。近年、自動車の希薄燃焼エンジンの排ガス浄化を目的として、酸素過剰条件でNOxを窒素に還元できるNOx還元触媒が開発されている。NOx排出濃度を抑制する方法として、NOx還元型触媒再燃器を提案した。

温度、圧力の上昇とともにNOx生成濃度が急激に上昇することから、1700℃、5MPa以上の高温高圧下で燃焼する高圧燃焼器では、従来の燃焼器よりも高濃度のNOxが生成するものと予想される。この燃焼条件では、触媒燃焼方式の適用は困難である。

次に再燃型ガスタービンの特性を用いて、再燃器において燃料がNOx還元について検討した。再燃器入口でのNOxの平衡濃度を図-11に示す。図より、入口温度700℃以下ではNOxの平衡濃度は十分に低く、NOx還元触媒を用いれば、高圧燃焼器で生成したNOxが窒素に転換できる。

再燃器に上記のNOx還元触媒と燃焼触媒を組み合わせたNOx還元型触媒再燃器を考案した。図-12に概念図を示す。

5. 超高効率最適再燃型ガスタービン複合発電システム（MORITC）の提案

以上の検討の結果、再燃型ガスタービンにおいて、LNG冷熱は入口空気冷却、中間冷却に使用するとともに排熱回収ボイラ内で600℃まで予熱する。高圧燃焼器はメタン改質冷却燃焼器を採用するとともにH型ガスタービンよりも200度高温化した1700℃とし、極めて高温ガスに曝される高圧ガスタービン第1段静葉はメタン改質冷却翼を採用する。再燃器は高温化しても熱効率改善効果が少ないため、ガスタービンの最終段の手前に設置し、NOx還元型触媒再燃器を採用して高圧燃焼器で発生したサーマルNOxを燃料によって還元するとともに、還元に使用した燃料を燃焼して800℃まで再燃するとした。

ガスタービン複合発電システムの高効率化には、排熱回収蒸気システムの高性能化も重要である。ここでは、蒸気タービン技術開発動向を踏まえ、再燃型ガスタービンの高温の排ガスから有効に熱回収できる超々臨界圧2段再燃型（33.3MPa/620℃/620℃）排熱回収蒸気システムとした。

メタン改質冷熱に必要な蒸気は排熱回収ボイラの中圧蒸気系より供給し、排熱回収ボイラ出口ガスを凝縮させて循環使用することとした。

図-13に提案の超高効率再燃型ガスタービンの概念図、図-14にMORITCの構成図を示す。

次に表-1に示す計算条件により、MORITCの熱物質収支計算を行った。表-3に熱物質収支、図-13にT－s線図、図-14に熱流れ図、図-15に排熱回収ボイラにおけるガス・蒸気熱交換線図を示す。
以上の結果、高圧タービン入口温度1700℃、低圧タービン入口温度800℃の場合、ガスタービン効率47.0%、複合発電効率60.1%となり、1500℃級複合発電システムの54%に比べて約6ポイントの効率向上である。吸入空気流量を586kg/秒とした場合、ガスタービン出力488MW、複合発電出力623MWとなる。提案のMORITCの熱効率改善は、再燃型ガスタービンの採用、高圧タービン入口温度の上昇、排熱回収蒸気システムの蒸気条件の向上に加えて、メタン分解冷却方式の効果によるものと考えられる。これは近未来に到達可能な空気燃焼によるガスタービン複合発電システムの熱効率の限界を与えられるものと考えられる。また、それに加えて、NOx還元型触媒再燃器を採用することにより、1700℃の超高温ガスタービンであるが、排ガスのNOx濃度を数ppm程度に抑えられる可能性があり、排熱回収ボイラ内に脱硝装置を無くすか、大幅に軽減できると考えられる。

あとがき

わが国の電気事業において、排ガスがクリーンでCO2排出原単位の少ないLNG焼きガスタービン複合発電が火力発電の主流となっており、温室効果ガス排出量の抑制の観点からも、今後ますます重要性が増すものと思われる。そのため、1500℃級蒸気冷却ガスタービン複合発電システムに続く、さらに高効率なガスタービン複合発電システム開発のニーズが生じることは容易に想像される。

ここでは発電用ガスタービン複合発電システムについて各種高発電化技術の検討を行い、超高効率再燃型革新ガスタービン複合発電システム（MORITC）を提案した。提案システムは熱力学的上に近いガスタービン効率47%、複合発電効率60%を越える極めて高い熱効率が期待できる。ただし、その実現には圧力比5.5の高圧力比圧縮機、新冷却方式による高圧力冷却機や高圧タービン翼、NOx還元型触媒再燃器等の開発が必要であり、多くの研究開発課題が残される。本提案が今後の発電用ガスタービン複合発電システムの技術開発の参考となれば幸いである。

参考文献

2) 森塚、幸田：高効率最適再生型革新ガスタービン（MORIGT）の検討、日本機械学会第8回動力エネルギーシンポジウム(2002/6)
3) 森塚、幸田、小沢、渡辺：ガスタービン複合発電システムの高効率化に関する検討、電中研(2003/6)
4) 竹矢：サイクル・システム技術、日本ガスタービン学会誌、Vol.25 pp9-17(1997/7)
5) 石井：1500℃級蒸気冷却ガスタービンを用いた次世代高効率コンバインドサイクルプラント、日本ガスタービン学会誌、Vol.27-3 pp25-29(1999/5)
6) 小沢、ベトロテック、19, 284 (1996)
STUDY OF APPLICATION
OF STEAM RECUPERATION SYSTEM
IN ADVANCED COMBINED CYCLES

*Uzunow Nikolaj (AIST)
Furutani Hirohide (AIST)

1. Introduction

The achievements of the material science and blade cooling technology restored the interest in systems with hydrogen-oxygen combustion (hydrogen turbines)[1]. Multiple scientific centres perform research on such systems, which results in potential obtainable electric efficiencies of 58-64% (related to the higher heating value - HHV)[2]. At the same time, intensive investigation on less expensive hydrogen production technologies is provided, for the fuel cost is the main disadvantage to the hydrogen turbine systems. The eventual transportation of the hydrogen fuel is also a problem, still not satisfactorily solved.

The essential idea of the system concept, presented in this paper, is to introduce steam recuperation system with H₂-O₂ combustion into advanced combined cycle (ACC) and thus obtain two main objectives:
• improvement of the system performance;
• low relative hydrogen consumption.

The second objective is a natural consequence of the extremely high hydrogen fuel cost. Appropriate relation between the hydrogen-supplied heat and generated electric capacity may also enable using the considered system for storage-generation operation: production of hydrogen during demand bottoms as a form of energy storage. This may provide hydrogen self-sufficiency together with continuous operation of the system. The eventual avoidance of transportation problems by installing the hydrogen production and storage facilities close to the power generating ones may be an additional advantage to such a solution.

The purpose of the investigation on the proposed gas-hydrogen system was to calculate the performance and determine the influence of the live-steam parameters on it.

2. System configuration

According to the above-mentioned concept, the considered system is based on ACC. The steam part of contemporary ACC provides three pressure levels. In the proposed system configuration, the heat from the introduced H₂-O₂ combustion is supplied only to the high-pressure steam. This is organized in a combustion chamber, located downstream the heat recovery steam generator (HRSG) and upstream the steam turbine’s high-pressure part.

This configuration excludes supply of additional heat in the HRSG (such a supply may improve HRSG’s performance and thus increase the output temperatures). The two heat sources to the steam part remain separate. This solution has two main features:
• it allows the HRSG to be designed depending only on the gas part of the system, i.e. independently of the second, hydrogen heat source;
it limits the achievable live-steam parameters and therefore allows expecting lower relative hydrogen consumption.

The proposed system configuration is presented on Fig. 1.

![Diagram](image)

Fig. 1. Configuration of the considered system

AC – air compressor; GT – gas turbine; HRSG – heat recovery steam generator; HPP – steam turbine's high-pressure part; MPP – steam turbine’s medium-pressure part; LPP – steam turbine’s low-pressure part; C – condenser; CWP – cooling water pump; CP – condensate pump

3. Assumptions and limitations

In order to enable system analysis and in connection with material limitations and operation requirements, some general assumptions were made, concerning operation parameters, design limits and rated characteristics of the system components. The basic assumptions are set in Table 1.

First of all, the gas turbine was assumed to be the base for the system analysis, i.e. constant in all the investigated cases. Its inlet parameters were set in accordance with the latest applied achievements in this field.

The limit for the LPP inlet pressure was introduced in order to avoid enhancement of the vacuum part of the system.

The contemporary HRSG are multi-stage ones. The minimum stage heat capacity of 5 MW was introduced to meet design and heat transfer requirements.

The other assumed values are conventional.

<table>
<thead>
<tr>
<th>Table 1. Assumed parameters, limits and component characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas turbine electric capacity</td>
</tr>
<tr>
<td>Gas turbine inlet temperature</td>
</tr>
<tr>
<td>Gas turbine inlet pressure</td>
</tr>
<tr>
<td>Ambient temperature</td>
</tr>
<tr>
<td>Condensing pressure</td>
</tr>
<tr>
<td>Condensate temperature</td>
</tr>
<tr>
<td>Maximum steam dryness at the condenser inlet</td>
</tr>
<tr>
<td>Minimum pressure at the LPP inlet</td>
</tr>
<tr>
<td>Maximum temperature at HRSG heated side</td>
</tr>
<tr>
<td>Minimum heat capacity of HRSG stage</td>
</tr>
<tr>
<td>Combustion chamber efficiency</td>
</tr>
<tr>
<td>Turbine internal efficiency</td>
</tr>
<tr>
<td>Compressor internal efficiency</td>
</tr>
<tr>
<td>Mechanical and generator efficiency</td>
</tr>
<tr>
<td>Pump efficiency</td>
</tr>
</tbody>
</table>
4. Main evaluation criteria

The properties and requirements, connected with the hydrogen fuel, increase the importance of adequate evaluation of the proposed systems. At the same time, the introduction of second heat source complicates this task. The overall electric efficiency, defined as:

$$\eta = \frac{N}{Q_e + \dot{Q}_h},$$ \hspace{1cm} (1)

is still the basic criterion, but not sufficient for proper evaluation.

The combination of two heat sources is profitable only if the generated capacity exceeds the total obtainable from the sources when separated. In order to enable more convenient evaluation of the combination effect, an additional criterion is defined: a method of calculation of the degree of utilization of the hydrogen-supplied heat (hydrogen efficiency) is presented below.

The system is virtually divided into two parts, connected with the particular sources and generating corresponding parts of the output capacity:

$$N = N_h + N_{ACC} = \eta_h \dot{Q}_h + N_{ACC}.$$ \hspace{1cm} (2)

After simple transformation, the hydrogen efficiency is defined as:

$$\eta_h = \frac{N - N_{ACC}}{\dot{Q}_h}.$$ \hspace{1cm} (3)

In Eq. (3) N_{ACC} is a constant, equal to the electric capacity, generated by a reference ACC (without H_2-O_2 combustion). It may be determined, providing relevant calculations basing on the assumptions and limitations, listed in Section 3.

Summarizing, the combination effect may be evaluated comparing the hydrogen efficiency of the considered system to the efficiency of pure hydrogen turbine systems. At the same time, the electric efficiency should be compared to that of the reference ACC.

5. Reference ACC

The reference advanced combined gas-steam cycle is presented on Fig. 2. The parameters of the working mediums at the main cycle points are included: pressure at the top (in MPa); temperature (in °C) or steam dryness in the middle; and mass flow rate at the bottom (in t/h).

In order to provide reliable reference for the evaluation of the considered gas-hydrogen system, the ACC was optimized with the generated electric capacity as an objective function. The obtained basic performance parameters are: total electric capacity – 143.6 MW; gas turbine electric efficiency – 0.386; steam turbine electric efficiency – 0.359; and total electric efficiency – 0.554.

The above efficiencies, as well as those in the result section of this paper, are related to the fuels' HHV.
The HRSG is the critical component of the combined gas-steam cycles. The configuration of the HRSG of the reference ACC is presented on Fig. 3. It is a three-pressure, eight-stage one. The same configuration was applied in the HRSG of the investigated gas-hydrogen system.

During the system optimization, the minimum stage heat capacity limit (5 MW), together with the steam parameters, determined the mass flow rates. At the same time, the tendency to decrease the flue-gas final temperature and the outlet steam dryness determined the LP steam parameters on the lowest permissible level and the absence of LP superheating stage.

6. Investigation results

The investigation on the considered gas-hydrogen system was provided using the HYSYS 2.4 software package. The system was appropriately modelled and its performance under various conditions calculated.

The influence of the HP steam parameters on the system performance was investigated. The provided separation of the two heat sources made independent changes in the pressure and temperature possible. Therefore these changes have been introduced in two steps:

- increase of the high pressure to certain new value and optimization of the system (which included adjusting the HRSG output temperatures, mass flow rates and medium pressure being the other independent variables);
- increase of the HP steam temperature.

Fig. 3. Configuration of the HRSG
I-VIII - stage numbers; LP - low pressure; MP - medium pressure; HP - high pressure;
MPD - medium-pressure drum; HPD - high-pressure drum
In the both steps, the steam dryness at the turbine outlet (condenser inlet) is a dependent variable.

The results for the steam dryness at the condenser inlet as a function of the HP steam temperature and pressure are presented on Fig. 4. It is an illustration of the permissible temperature range for the particular pressures, regarding the assumed limitations.

The obtained total generated electric capacity is presented on Fig. 5.

![Fig. 4. Steam dryness at the condenser inlet (the indexes refer to corresponding pressures in MPa)](image)

![Fig. 5. Total generated electric capacity](image)

The results for the total electric and hydrogen efficiencies are presented on Fig. 6 and 7 respectively. Comparing to the other performance characteristics, the hydrogen efficiency is much more dependent on parameters other than the HPP inlet pressure and temperature, such as mass flow rate and HRSG output temperature. This causes occurrence of optimum HP steam pressure (for the given gas part, it is 12.4 MPa).
In order to enable easier evaluation of the system applicability to generation-storage operation, an additional quantity was calculated. It is defined as duration of the energy storage operation within 24 hours, providing hydrogen self-sufficiency. The results for this quantity are presented on Fig. 8 (92% efficiency of hydrogen generation assumed).

7. Conclusions
- The introduction of steam recuperation system with H₂-O₂ combustion proved to increase significantly the output parameters, comparing to ACC.
- The proposed configuration is relatively simple and provides separation of the two heat sources in the steam part of the system. It also limits the applicable temperature and pressure range.
- The necessity to calculate the partial efficiency for the second, hydrogen heat source was confirmed. The obtained values (exceeding 64% HHV) are satisfactory and encouraging.
- Considering eventual application of the proposed gas-hydrogen system to storage-generation operation, the live-steam parameters should be set to 12-16 MPa and 1100-1200 °C (with the given gas part).
- Further investigation on gas-hydrogen systems is held, aimed at obtaining efficiencies of 60% HHV (total electric) and 65 % HHV (hydrogen).

References

Nomenclature
- \(ES \) – duration of energy storage operation;
- \(N \) – generated electric capacity;
- \(\dot{Q} \) - heat flow;
- \(T \) – temperature;
- \(x \) – steam dryness;
- \(\eta \) - electric efficiency.

Subscripts
- \(ACC \) – refers to advanced combined cycle;
- \(g \) – refers to gas;
- \(h \) – refers to hydrogen;
- \(c \) – refers to condenser inlet.
高温ガス炉ガスタービン発電システム（GTHTR300）の

動力変換系統の設計

* 高田 昌久、滝塚 貴和、國富 一彦

Yan Xing（日本原子力研究所）
皆月 功（三菱重工業株式会社）

1. はじめに

高温ガス炉は、安全性が高く、冷却材であるヘリウム（He）ガスを約900℃の高温に加熱することができるので、高効率発電の他に水素製造等の多様な熱利用への適用が期待されている。高温ガス炉によるガスタービン発電システムでは、原子炉で加熱された高温ガスを直接ガスタービンに導く直接サイクルを導入することができる。近年、南アフリカ、米国、ロシア、オランダ、フランス、中国で検討が進められている。日本原子力産業会議が主催する「原子炉熱利用に関する将来展開検討会」では、電力会社、原子力メーカ、研究機関、大学等の意向を反映して高温ガス炉ガスタービン発電システムのユーザ要件がまとめられた。原研では、本ユーザ要件に基づき、GTHTR300の設計目標を定め、平成13年度から電気出力約300MWのGTHTR300の設計研究及びガスタービンシステムに関連する要素技術開発を開始した。GTHTR300の原子炉設計では、原研が高温工学試験研究炉（HTTR）開発で培った技術が活用されている。GTHTR300の動力変換系統の概念図をFig.1に示す。動力変換系統設計は、横置きタービンの採用、熱交換器容器と動力変換器の分離等、海外システムの設計概念とは異なる原研独自の概念に基づいている。

GTHTR300の主要仕様をTable 1に示す。

本設計では、作動流体がHeガスであることから、閉サイクルであること、既存の火力ガスタービン発電システムの開サイクルとは設計が異なる。また、再生サイクルをすることでプラント効率を向上させた。

一方、経済性を高めるために、主要機器の物量低減と高性能化を目指した。ターボマシン、発電機及び再生熱交換器、前冷却器をそれぞれ動力変換器及び熱交換器容器内に収納する。ターボ圧縮機と発電機ロータはフレキシブルカップリングにより接続して単軸ロータとした。両ロータはHeガス中に設置するために無潤滑の磁気軸受で支持する。再生熱交換器にはプレートフィン型を用いる。前冷却器はコンパクトなローフイン管へリカルコイル型として物量を低減した。一方、より高い発電効率を達成するために、系統内主要機器の高性能化を図った。タービンと圧縮機のポ

Fig.1 Plant layout of GTHTR300

<table>
<thead>
<tr>
<th>Table 1 Main specification of GTHTR300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor power</td>
</tr>
<tr>
<td>Reactor inlet and outlet temperature</td>
</tr>
<tr>
<td>Turbine inlet pressure</td>
</tr>
<tr>
<td>Turbine mass flowrate</td>
</tr>
<tr>
<td>Reactor core height</td>
</tr>
<tr>
<td>Inner and outer diameter of core</td>
</tr>
<tr>
<td>Average fuel enrichment</td>
</tr>
<tr>
<td>Average power density</td>
</tr>
<tr>
<td>Pressure vessel inner diameter</td>
</tr>
<tr>
<td>Power conversion vessel diameter</td>
</tr>
<tr>
<td>Heat exchange vessel inner diameter</td>
</tr>
</tbody>
</table>
リトロープ効率をそれぞれ93%、90%まで高くすること、並びに再生熱交換器の温度効率を95%まで高くすることを設計上の目標とした。空気で比べハパノガスの比熱が5倍程度大きいため、同じ圧力比でも、ハパノガスターボ圧縮機では空気燃焼式ターボ圧縮機に比べて体積流量が小さく、段あたりの熱効率が小さい。このため、ハパノガスターボ圧縮機は高圧比・多段型となり、空力性能上不利となる。これを克服するために翼形状を3次元化するなどして設計目標を満足できるようにした。850℃、7 MPaのタービン入口条件で45.8%の発電効率を得た。

また、ターボ圧縮機は不活性なHeガスを使用するため、既存の蒸気タービンや火力ガスターボン発電プラントで観われる動・静翼の腐食等による損傷の可能性が低い。この特性を考慮してプラントの保守・補修方針を提案した。

本報告では、GTHTR300ターボ圧縮機設計を中心に動力変換システム設計の特徴、およびターボ圧縮機の保守・補修方針について報告する。なお、本件は文部科学省から原研への委託により実施している電源特性「核熱利用システム技術開発」の「高温発電システム」の内容に関するものである。

2. 動力変換システム設計の特徴

本プラント設計では、原子炉熱出力600MWに対し発電端出力約275MWで、発電効率45.8%を得た。本プラント全体のヒートマスバランスの設計値をFig. 2に示す。システムの設計圧力を上げると系圧力損失が軽減できるのでサイクル効率は上がる。しかし、原子炉圧力容器の内厚を厚くする必要があるので、耐体質1000トン以下という製作性の限界が問題となる。本制限を満たせつつ、プラントの建設単価が最小となるようシステムの設計圧力を7MPaとして、原子炉において850℃まで加熱された6.88MPaのHeガスを、タービンを駆動して618℃、3.68MPaとなって再生熱交換器に入り、圧縮機を出た137℃、7.05MPaのHeガスと熱交換する。再生熱交換器で167℃まで冷却されたHeガスは、前置冷却器において28℃まで冷却された後に、圧縮機で7.05MPaまで圧縮される。圧縮機を出たHeガスは再生熱交換器により587℃まで加熱され原子炉に流入する。

本設計では、原子炉圧力容器用材料として軽水炉で使用実績あり低価格のMn-Mo鋼を使用するが、最高使用温度の制限値が370℃である。そのため、原子炉入口Heガスの温度が587℃と高く、原子炉圧力容器の冷却には使用できない。そこで、圧縮機出口からの137℃の低温Heガス流量の0.5%を原子炉圧力容器の冷却に使用した。原子炉及び系統圧力損失は4%とした。一方、タービンにおいては、ディスクと車室を冷却し、タービン動翼を無冷却として、その冷却流量を全流量の1%まで制限した。また、動力変換器内の高圧Heガスがラビリシスシールを通して圧縮機入口へ流入する量を全流量の1%まで制限した。

プラントの出力制御は、Heガス圧力を低減させ余裕圧力値を低減させるために、インベントリ制御とバイパス制御を併用する。プラント起動・停止時の出力制御にはインベントリ制御を採用する。プラント1基あたり、圧力12MPa、40m³のHeガス圧力値が16基必要である。通常運転時の出力制御には、圧縮機出口と前置冷却器入口との間に設けたタービンバイパス制御弁CV1を開閉させて、原子炉とタービンへのHeガス流量を制御する。タービン側の急速な速度変動を伴う商用電源喪失時等では、CV1とそれに並行して設置したバイパス弁V4を急開させることにより、
速度変動が超過速度制限値である安定回転数の110%以下に抑制する。また、再生熱交換器低圧側入口温度が制限温度650℃を超えないように、制御弁CV2の開度を調節して、圧縮機出口低温ガスを再生熱交換器低圧側入口にバイパスさせて温度を制御する。

3. タービン

（1）タービン基本体格及び空力性能 一次元性能計算により基本体格を決めた後、既存の3次元空力設計手法に基づき翼形状を最適化した。タービンの段数を6段として基本体格を決めた。タービンの概要をFig.3に、主要仕様をTable 2に示す。タービンは、中空ディスクボルト締め構造を採用して軽量化を図った。段落速度比は初段から最終段に向かって大きくして0.53～0.62の範囲とした。上流段は高温のため熱脅差をやや大きくとり、最終段は排気損失が小さくなるような速度比を定めた。反動度は約45%とした。上流段から最終段まで翼高、ポス比の変化が小さいため、速度三角形にも大きな変化はない。平均的には静翼、動翼ともに流入角が60°～80°とした。最終段の絶対流出角は82°とほぼ軸流流出として排気損失をタービン全体効率の1%程度まで抑えた。また、流量係数、負荷係数から見て特に高負荷となる段はない。

（2）3次元空力設計 動翼については流入角が翼高さ方向に40°～100°と変化するため動翼をねじることによりマッチングをとった。静翼については円弧曲面にすることで、静翼の2次流れ損失を低減することができ、同時に、動翼の流入角を増大させることができるので動翼の損失も低減できた。以上の設計により、段効率にして0.5～1.0%の性能を達成できた。一方、全段の翼端すき間を1mmとした。また、翼端にはシュラウドを付けることにより翼端すき間リソースによる損失を低く抑えた。本設計によりタービンのポリトロープ効率を92.8%とすることができ、要求をほぼ満足することができた。

（3）冷却構造 圧縮機出口からの低温Heガスを導入して、磁気軸受、ディスク、翼根と車室を冷却する。タービン動翼材として一方向凝固Ni基耐熱合金を採用して無冷却とした。動翼について、遠心強度、振動強度、曲げ強度の解析を実施して強度上問題のないことを確認した。また、ディスク冷却構造を検討して、ディスク強度を決める設計温度とタービン性能を決める冷却ガス流量の最適化により冷却ガス流量を主流の1%まで低減できた。

4. 圧縮機

（1）圧縮機基本体格および空力性能 設計解析手法として、圧縮機設計で多種多様な実績を挙げ、かつ性能予測精度が高い既存の手法を適用した。段数を20段として圧縮機の基本体格を決めた。圧縮機の概要をFig.4に、主要仕様をTable 3に示す。動翼と静翼の段平均静圧上昇係数(=翼後方の静圧上昇/翼入口動圧)は約0.37で一定とした。この値はサージに対する上限値0.5より十分低い。マッハ数は最大0.3程度と十分低く、拡散係数(=翼背面での最高速度/翼背面での
流出速度)／(翼背面での平均速度)）も損失が急増する0.6111に比べ十分低い値0.45以下に保持された。チップクリアランスが1mmのとき、ポリトロープ効率90％、サーボマージン約30％が得られた。
（2）3次元翼空力設計
(a) 翼グループ設計 本圧縮機流路がほぼ平行であるため、各段の翼形状の差が小さい。このため、全20段を各2つのグループに分割し、同一グループ内の翼は同じ形状で設計ができる。下流側より上流側の翼の方が性能に与える影響は大きいので、同一グループ内では先頭段を代表翼として設計し、後段は先頭段羽のチップあるいはハブをカットした形状にした。ただし、初段は単独に設計し、2段目以降をグループ化した。グループ数を少なくすることによって、設計・製作の合理化を図る。しかし、グループ内の翼形状を同一の翼形状とした場合、同一グループの後段でインデンスが大きく、翼周りの流れが不安定になり、失速が生じることもある。インテンスが適切になるように、グループ数を5としました。本設計では、各グループ先頭段動翼、静翼の流入角、流出角の違いは非常に小さく速度三角形がほぼ一定である。
(b) 3次元翼設計の空力的特徴 境界層における損失を低減させるため、端壁近傍の翼入口角を流入角に合わせた翼設計を行なった。端壁近傍の流れを考慮しない設計の場合の翼出口における全圧分布をFig. 5に示す。前方段の翼では、高さ方向にほぼフラットな分布であるが、後方段になるほど、端壁部における流れの歪みが発達し、ハブ及びチップ近傍の圧力は平均圧力より低く、中間部では平均圧力より高くなった曲線した分布となっている。性能予測は、翼が高さ方向に均等に仕事することを前提に行われるため、端壁近傍の流れを考慮しない設計では、後方段ほど、予想と実際の圧力分布が異なり、予想した空力仕事をしていないことになる。端壁近傍の流れを考慮して

![Fig. 4 Compressor of GTHTR300](image)

<table>
<thead>
<tr>
<th>Table 3 Main specification of compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet/outlet helium gas pressure</td>
</tr>
<tr>
<td>Inlet/outlet helium gas temperature</td>
</tr>
<tr>
<td>Rotor diameter (1st/20th stage)</td>
</tr>
<tr>
<td>Outer diameter of rotor blade (1st/20th stage)</td>
</tr>
<tr>
<td>Boss ratio (1st/20th)</td>
</tr>
<tr>
<td>Stage number</td>
</tr>
<tr>
<td>Rotational speed</td>
</tr>
<tr>
<td>Number of rotor blades (1st/20th stage)</td>
</tr>
<tr>
<td>Number of stator blades (1st/20th stage)</td>
</tr>
<tr>
<td>Flow coefficient</td>
</tr>
<tr>
<td>Work coefficient</td>
</tr>
<tr>
<td>Reaction</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Blades of stator and rotor</td>
</tr>
<tr>
<td>Rotor disk</td>
</tr>
<tr>
<td>Casing</td>
</tr>
</tbody>
</table>

![Fig.5 Deviation of total pressure from average total pressure along blade height for non-over-camber airfoil design](image)
翼入口角を変えた設計の場合について、翼出口における全圧分布を Fig. 6 に示す。後方段においても圧力はほぼフラットな分布を示していることがわかる。端壁近傍の流れを考慮した設計では、予想と実際の圧力分布が一致することとなり、予想通りの空力仕事をすることがになる。

本圧縮機は、高圧比多段型で、従来の産業圧縮機の実績を超えた領域の機器である。本圧縮機設計に基づき、1/3スケール、4段の圧縮機モデルを製作した。今後、He ガスを作動流体として圧縮機モデル性能試験を実施する。本試験データをもとに実機圧縮機設計の妥当性を検証するとともに、性能予測技術を確立する。

Fig. 6 Deviation of total pressure from average total pressure along blade height for over-camber airfoil design

5. ダーボ圧縮機の保守・補修方針 11)

GTHTR300 のダーボ圧縮機は使用環境が純度管理された He ガスであるため、蒸気タービンで懸念されるエロージョンや腐食、空気燃焼ガスタービンで懸念される高温酸化の発生の可能性はほとんどない。また、閉サイクルであることから閉サイクルの空気燃焼ガスタービンと比べて系統内に侵入した異物によるエロージョンの可能性も十分低い。また、He ガスの純度を確保するために軸受には潤滑油不要かつ非接触の磁気軸受を採用することから、通常運転においては軸受部の摩耗も発生しない。したがって、留意すべき劣化・損傷事象は高温・高圧の He ガス環境中で高速回転状態で運転されることに起因する高温クリープあるいは低サイクル疲労による部材の割れや変形である。この観点に基づくと、圧縮機は高圧ではあるが材料のクリープ温度よりも十分低い He ガス環境であるため、有意な劣化・損傷事象への懸念は小さい。そこで、GTHTR300 のダーボ圧縮機について設計上の特徴を考慮しながら火力発電プラントの空気燃焼ガスタービンと比較すると、以下の理由で高温クリープは厳しくない。

① 翼部は無冷却構造、耐熱合金母材のみでの対応とするが、ガス温度は最高 850℃であり火力ガスタービンよりも 200℃以上低い
② ベースロード運用であり、翼部寿命に対する低サイクル疲労の影響は十分小さい

点検としては定期的な開放点検が必要だが、その周期は以下のことを考慮すると定性的には 6 年每でも健全性の維持は可能である。

① 翼部の設計クリープ破断寿命は 10 万時間（継続率 90％で約 12～13 年）
② 翼部交換までには最低 1 回点検を行うのが適切
③ 火力ガスタービンでは 4 年程度まで開放点検周期が延びてきている

一方、GTHTR300 ではプラント運転中に出力燃料体から放出された核分裂生成物が He ガスとともに系統内を循環しながらガスタービンに沈着する。また、材料成分として Co が含まれている翼部は
原子炉からの中性子ストリーミングにより放射化される。これらはいずれもγ線源となるため、点検作業時には適切な作業員への被ばく低減対策が必要となる。また、開放点検のために動力変換容器から取出されたガスタービン・圧縮機は開放出中に可能な限り放射能レベルを低減させる目的から一定期間保管するのが妥当である。従って、点検工事短縮の観点から、ガスタービン・圧縮機は予備機で入れ替える運用とする。

6. まとめ

GTHTR300 は、原子炉で 850℃まで加熱した He ガスでタービンを駆動する直接サイクルガスタービン発電システムである。動力変換系統は He ガスを作動流体とする再生式間サイクルを採用しており、既存の空気燃焼ガスタービン発電システムとは設計が大きく異なる。GTHTR300 の設計研究のうち動力変換系統設計、特にタービンと圧縮機設計およびそれらの保守・補修方針の検討により得られた成果について報告した。

本プラント設計では、経済性を高めるために、主要機器の物量低減と高性能化を目指した。

1. より高い発電効率を達成するために、タービンと圧縮機のポリトロープ効率をそれぞれ 93%、90%まで高くすることを設計上の目標とした。タービンと圧縮機は高ボス比・多段型となり、空力性能に不利益となるが、これを克服するために翼形状を 3 次元化するなどして設計目標を満足することができた。

2. プラントの保守・補修方針を検討したところ、ターボ圧縮機は不活性な He ガス雰囲気での使用のため、既存の蒸気タービンや火力ガスタービン発電プラントで見られる腐食等による損傷の可能性が低い。本プラントの保守・補修方針としては、この特性を考慮して保守・補修周期を 5 年程度まで長くして稼働率を約 90%まで上げることを提案した。

3. 全体的には発電効率が 45.8%となり、効率が高く、安全性に優れた原子力発電プラントの成立性の見込みが得られた。

参考文献

(1) R. Nicholls, IAEA TCM, Petten, the Netherlands, Nov.(1997).
(2) W.A. Simon, IAEA TCM, Petten, the Netherlands, Nov.(1997).
(3) A.I. van Heek, IAEA TCM, Petten, the Netherlands, Nov.(1997).
(6) 豊富一彦、片西昌司、高田昌二 他、日本原子力学会誌、1[4],352 (2002).
(8) 佐藤友彦、青木善昌、ガスタービン誌、17[65],46(1989).
(9) 山口信行、ターボ機械、13[11], 44(1985).
(12) 小杉山真一他、日本原子力学会誌、(現在投稿中)。

Download service for the GTSJ via 54.70.40.11, 2020/04/05. —60—
先進的FADECの概念検討

＊杉山七男（航空宇宙技術研究所）
田原 剛（航空宇宙技術研究所）

1. まえがき

今日の航空機用ジェットエンジンの性能向上は、コンプレッサ、タービン、燃焼器等の要素技術や材料技術のためまずの進歩によって実現され得るものである。これらの技術進歩もしやすいに鈍化し、限界に近づきつつあり、革新的な技術を導入することは性能向上は困難になって来ている。しかし、実用のエンジンでは、外的変化（飛行条件、ミッション等）や内部変化（性能劣化、破損等）に対する耐性が低いため、最悪状況（worst case scenario）においても安全性を確保するように十分なマージンをとって運用されており、エンジン性能が犠牲にされている。従って、融通性や適応性を高めた運用技術による性能向上の余地がある。つまり制御技術からのアプローチにより、安全性に配慮しつつ、エンジンが潜在的に有している性能を最大限発揮させ、性能向上をはかることが可能である。このような制御を取入れたエンジンを知能化エンジン(Intelligent Engine)と称している。本報告は、この制御を実現するための先進的エンジン制御システム(FADEC: Full Authority Digital Electronic Control)の概念検討を行ったものである。

2. エンジンの性能向上

2.1 設計マージン・運転マージン

エンジンの設計において、不確定な事項は設計マージンとして見込む。例えば、エンジン製造誤差等の原因により、設計エンジン（average engine）に比較して、製作されたエンジンの推力および燃料消費率が1～3％[1]の範囲でばらつく。最悪のエンジン（minimum engine）に対しても公称性能を保証するために、公称値より3％高い推力および燃料消費率を実現するようにエンジンを設計する必要がある。また、経年による汚れ・磨耗・変形・異物吸引等に起因する性能劣化（10,000時間で燃料消費率が5～15％悪くなる[2]）は避けられず、一定期間内の性能を保証するならば、さらにマージンを見込んだ設計が必要になる。この他、エンジン搭載による損失（ INSTALLATION LOSS：インテークやノズルによる空気の損失、補助機欠動パワーやブレード空気の取出し損失）も設計マージンとして考慮しておかなければならない。しかし、過剰なマージンでは必要以上に大きなエンジンが設計されることになるため、重量、寸法、前面面積の制限の厳しい航空用エンジンの設計ではマージンの設定は極めて重要になっている。逆に、過少のマージンでは性能余裕がなく、悪条件が重なった場合、エンジンの安全性を危うくする。

一方、エンジンの運転において、不確定な事項は運転マージンとして見込む。運転時の制限として、コンプレッサおよびファンのサージ制限、タービン入口温度制限、ロータ回転速度制限などが代表的であるが、これらの制限は設計を容易にするためのマージンである。例えば、商用機エンジンでは、コンプレッサおよびファンのサージマージンがそれぞれ20〜25%および10〜15%をもつよう制御を調整する。サージ現象はエンジンを破壊に至らしめるため、十分なマージンを確保すべきだが、過大のマージンはエンジン加減速時間を増加させるため、着陸時に上昇（touch and go）等の高速応答性が要求される場合に不利となる。タービン入口温度制限に関しては、直接計測ができないため、タービン出口温度から入口温度を推定するが、その許容温度の

第31回ガスタービン研究講演会
講演論文集、2003.6、（北見）
Download service for the GTSJ via 54.70.40.11, 2020/04/05. –61–
〜50Kとなるよう制御を調整する。この他、吸入空気の不均一性（Inlet Distortion）、計測器・操作機器の誤差、Reynolds数の影響等も運動マージンとして見込む必要はない。過剰なマージンは、発生推力、燃料消費率、応答性の悪化をまねき、過剰のマージンはエンジンの安全性を危うくすることになる。

これらのマージンは、最悪状况においても十分の安全性が確保でき、しかも出来るだけ小さく設定されるのが望ましい。設計、製作、運転等の様々なフェーズにおける不確定性を少なくできれば、マージンを小さくすることができ、エンジン性能を最大限発揮させ性能向上をはかることが可能となる。

2.2 性能追求制御（PSC: Performance Seeking Control）

制御技術からのアプローチにより、安全性に配慮しつつ、エンジンが潜在的に有している性能を最大限発揮させ、性能向上をはかるには、図1に示すような2つの手法が考えられる。

1つは前記のマージンの最小化による性能向上である。現用のジェットエンジンは、十分なマージンをとって運用されている。もし必要なエンジン変数をオラインで精度良く推定（あるいは直接計測）することができれば、これらのマージンを減少させることができ、エンジンが潜在的にもつ性能を十分に引き出し、性能の向上が期待できる。

他の1つはパラメータ最適化による性能向上である。現用のエンジン制御システムは柔軟性に欠けており、ある運転条件で最適であっても、他の条件では最適とは限らず、エンジン性能の損失となっていた。複数の制御変数を有するエンジンでは、必要推力を発生するのに自由度があるため、もし必要なエンジン変数をオラインで精度良く推定（あるいは直接計測）することができれば、ミッションに応じて柔軟性に富み、多機能なエンジン制御を実現することができる。例えば、必要推力を発生するのであれば、燃料消費率を最小にするように制御変数を設定するのが、経済的には有利であろうし、タービン出口温度を最低にするように制御変数を設定するのが、エンジン寿命の点からは有利となる。このように種々のパラメータが最適になるように制御変数を設定するとともに、制御マージンを極力小さくして、エンジンの経済性、環境適合性、安全性、寿命の面で有利な運用を実現するエンジン制御が可能である。これを性能追求制御（Performance Seeking Control）と呼ぶ。この制御では、オンラインでパラメータの高精度推定、最適値探索を行うことになるが、エンジン状態に応じて逐次チューニングされる実際エンジンに忠実な「オンライン同定モデルエンジン」を制御装置内に内蔵することにより可能となる。
図2にその概念を示す。ここでは、図中に示すような5つの制御変数（W_f：燃料流量、ξ_b：ターピン静翼角、A_r：ノズル面積、β_m：後部バイパスジェクタ（RVABD）角、β_f：前部バイパスインタジェクタ（FVABI）角）をもつ超音速エンジンを想定している。飛行条件Θ（飛行速度、環境温度、環境圧力）と制御変数を指定すれば、定常状態におけるエンジンパラメータ（燃料消費率S_f、推力F、ターピン入口ガス温度T_{4in}、ターピン出入口温度T_{4out}、サーチャージャーS_m、率等）は一意的に定まる。これらは通常のセンサで直接計測することはできないが、モデルエンジンを参照することにより推定値を求めることができる。この推定値が高精度で信頼できるものであれば、図に示すように、パラメータを最適化（最小化、最大化あるいは適正化）する制御変数の探索はモデルエンジン上で容易にされ、経済性、環境適合性、安全性、エンジン寿命の面で有利な制御が実現する。ただし、経済性を追求すれば環境適合性が犠牲になるなど、これらの目標は互いに競合することが多く、どの目標にプライオリティをもたせるか、その時のミッションに応じて決める必要がある。

性能追求制御の効果
性能追求制御が最も効果的であるのは、新規エンジンを設計・製作する場合である。従来のエンジン設計は、コンプレッサ、ターピン等のエンジン要素を個別に設計し、それらを積み上げたにすぎず、制御技術による性能向上の可能性を想定していない。しかし、コンプレッサのサージマージャーを従来の半分としてエンジン設計を行うと図3のような性能向上が期待できる。この改善率は、材料技術、冷却技術、空力技術等の向上による改善率に比べ劣らない値である。この他の種々のマージャーの縮小により、さらに性能改善が可能になる。

既存のエンジンにおいて、良好に設計され、良好に製作されたエンジンが、設計点で動作している限り、制御技術による性能向上は困難であることは注意しておく必要がある。もし制御によって性能向上が達成できるならば、それは設計が悪かったということになる。しかし、製作誤差、性能劣化、設計点外あるいは部分負荷運転、ディストーション、計測器誤差、アクチュエータ誤差等は必ず存在し、性能追求制御の必要性が生じる。この場合、性能追求制御の効果は、図3に示したレバーは達成困難であろうが、運転条件とミッションに応じた柔軟な運転を可能にするため、従来の固定的な制御にくらべ、性能向上は期待できる。

2.3 コンディション・モニタリング
エンジンが有している性能を最大限発揮させ、性能向上をはかるには、エンジンを最良の状態で整備しておくことも重要である。現在のジェットエンジンの整備方式は、従来の定期整備方式からオンコンディション整備方式に移行している。これはエンジンの状態を常時モニタし、分解整備が必要と判断された時に機体から取り外す整備方式である。つまりコンディション・モニタリングの実施を前提とした整備方式となっている。エンジン状態（Health Condition）に関する不良の情報は、TBO
（Time between Overhauls）を延長させ、莫大な費用を要する開放整備あるいは取りおろし整備の回数を減らすという経済的効果ばかりでなく、故障予知や故障探求にも有効であり、航空機の信頼性を維持する上でも不可欠なものとなっている。図4はコンディション・モニタリングの原理を示している。

エンジンに何らかの問題が発生すると、その部位の要素特性や形状が変化し、大小週換はあるが、多くの変数の変化となって現れる。この変数を計測することにより、逆にどのような要素でどのような問題が起こったかを合理的に推定し、問題の原因を特定することができる。その推定・特定の精度はケースバイケースで異なるが、いかなる整備を行うべきかの指針を与えることができる。

このコンディション・モニタリングにおいても、上記の性能追求制御に必要とされた「オンライン同定モデルエンジン」が中心的技術となる。モニタリングに必要な情報（例えば要素特性、燃料消費率、ターピンメタル温度等およびそのトレンド）を提供し得るからである。制御システムとモニタリング・システムは、技術的パックグラウンドの類似性から、近年極めて揺動してきており、統合される可能性が高い。

3．先進的FADECの提案

3.1 構成

前記のような技術を中核にした先進的FADECを以下に提案する。先進的FADECは、図5に示す様に、3つのレイヤーから構成される。

レイヤー0（ハードウェア層）エンジンに直結する機械油圧式のハードウェアとセンサ類である。レイヤー1の必要情報を収集するとともに、レイヤー1の指令により操作機器（アクチュエータ、バルブ、ソレノイド等）を操作する。またレイヤー1の故障時、エンジンを安全に運転できる最低限のバックアップ機能（燃料量の操作、可変機構の現状フリーズあるいはエルセーフ位置フリーズ等）を有している。機器の信頼性はレイヤー1、2よりも高いもの（MTBF20,000時間以上）が要求される。現用のエンジン制御器にはこの機能がある。

レイヤー1（基本制御層）基本的なエンジン制御（出力制御、制限制御）の演算を行う。出力制御とは、パイロットの操作するスロットル（スラストレバー）指令に応じて安定したエンジン推力を維持する制御である。制限制御とは、制御動作指令においても、エンジンを安全な作動領域内にとどめるもので、ロータ回転速度制限、コンプレッサ・サージ、排気ガス温度制限等がある。

マイクロプロセッサを中心とした計算機部分であるが、計算能力はレイヤー2より低くてもかまわないが、レイヤー0に近い信頼性が要求される。このため高信頼性部品を用いるとともに、周重系等の高信頼化対策をほどこす。
現用エンジンのFADECはほぼレイヤー1に相当するが、そのソフトウェアは実機のある電気油圧機械式（EHMC）制御器を単純に置き換えたものにすぎず。1入力1出力（SISO）系の設計法に基づいており。先進的FADECでは、多変数ロバスト制御設計を基礎にして、多変数系の特性を駆使した高度な制御があ末込める。

レイヤー2（性能管理層）性能追求制御、冗長制御、コンディション・モニタリング等の高度な制御を行うとともに、データ蓄積・データ送信を行う。性能追求制御とは、選んだような種々のエンジン性能パラメータを最適に維持するものである。冗長制御とは、センサ、アクチュエータ等の故障時に故障の検知、隔離、代替機能の駆動を行うものである。また、コンディション・モニタリングとは、エンジンの健康状態を検知し、情報提供することである。マスメモリと通信機能は、地上解析支援システムのためのデータ蓄積およびオンライン送信を行う。これらの制御機能により、エンジンの効率、安全性、信頼性、健全性、寿命の向上等の多目的な制御目標を実現する。さらに、航空機の飛行制御と情報受入を行い、飛行ミッションに応じたエンジン制御を可能とする。これは、航空機／推進統合制御（Flight-Propulsion Integrated Control）とも呼ばれる。このレイヤー2は制御システムと言うよりは性能管理システムと言うべき部分である。

先進的FADECにおけるこれらの高度な制御は、エンジン状態に応じて逐次チューニングされる実機エンジンの変動を基準モデルを参照することにより実現する。計測不能パラメータをこのモデルから得ることにより、限界に近い性能を引出すべく性能追求型制御が可能となる。また、エンジン要素の性能変化をこのモデルから予測することができれば、コンディション・モニタリニングにも有効に利用されるようになる。さらに、不良センサ出力のモデルエンジン出力による代替も可能となる。このレイヤー2は計算能力の極めて高いマイクロプロセッサを中心に構成される。レイヤー1ほどの信頼性は要求されない。最重要制御であるレイヤー1の信頼性確保のため、レイヤー1とはハードウェア的に分離している方が良い。

現用エンジンでは、コンディション・モニタリング機能のみが実用化しており、世界で約400ユニット（1998年時点[8]）がエンジンに搭載されている。これは上述のモデルエンジンによる解析法ではないが、エンジン性能劣化情報等を提供し、エンジン整備に利用されている。

近年、ジェットエンジンの制御では分散制御（DC）（Distributed Control）と称して、センサ、アクチュエータ等をインテリジェント化（Smart Sensor, Smart Actuatorと呼ぶ）し、共通仕様で1本のバスに接続し、制御用計算機と信号の授受を行い、LANのような構成で制御を行う方向にある。これは、接続ケーブル（重量）の減少、機器の共通化、修理交換の簡便化を目指したものであるが、上記レイヤー0〜2から成る先進的FADECはその分散制御の構成が適している。

3.2 モデルエンジン

先進的FADECは、エンジン性能変化に応じてオンラインで逐次チューニングされる実機エンジンの変動を基準モデルを参照しながら、その時のミッションと飛行条件に応じて適切な制御を行う適応制御系を形成。これはModel-Based Control（これに対して従来の方法をSensor-Based Controlと呼ぶ）であり、制御に必要な直接計測が困難なエンジンパラメータをいかに精度よく同定するかにその成否がかかっている。

モデルエンジンを構成するのに適している同定法は、いわゆる観測器（Observer）、フィルタ（Filter）と称するものであるが、これらの多くは線形理論である。非線形性を有するプラントにこれを適用する場合、作動点の転移に対応して、ゲインスケジューリングや逐次再計算を行う必要があり、計算負荷やメモリ容量の根拠な増大をもたらし現実的でないことが多いのである。図6に示す一定ゲイン拡張
カルマンフィルタ（CGEKF: Constant Gain Extended Kalman Filter）は、次の特徴を有し、先進的 FADEC に内蔵されるモデルエンジンとして適切である[8]。
(1) 計算負荷や必要メモリ容量を増加させることなしに、非線形プラントであるジェットエンジンに適用できる。
(2) 適切な変数について良質な計測がなされれば、エンジンの全作動領域において、要素特性変動パラメータの変化を認識し、計測不能変数を推定することができる。
(3) 演算の大部分は非線形ダイナミック・シミュレーションであり、しかも実時間以上の演算速度が必要となるが、圧倒的に高い計算能力を有する近年の汎用マイクロプロセッサで実現可能である。
(4) センサ故障に対してもエンジン制御システムを存続させる冗長制御が可能であり、安全性、信頼性向上に寄与する。

4. むすび
本報告で提案した先進的 FADEC は、航空エンジンの性能向上、安全性向上、環境適合性向上を主な目的として、シミュレーション／システム同定技術および適応制御技術を取り入れた新しい概念のエンジン制御技術であり、マイクロプロセッサの信頼性の問題を除外すれば、実現性において問題となることはほとんどない。

超音速機エンジン、超高バイパス比圧縮空気エンジン、高速垂直離着陸（VTOL）機用エンジン等、ますます複雑化する将来の航空エンジンは、制御への依存性が高く、制御なしには運用できないと言える程であるが、ここで開発されたような先進的 FADEC は、従来制御システムに比べはあるかに柔軟にこれに適応できる。また、航空用エンジンのみならず、類似した内燃機関である発電用、産業用、車両用、船舶用ガスタービンにも適応でき、エンジンの経済性、安全性、環境適合性、寿命を制御の面から向上させるものである。

参考文献
クラスター・ファンによる小型VTOL機エンジンシステム

*松田孝雄（航空宇宙技術研究所）
齋藤喜夫（航空宇宙技術研究所）
岩瀬 隆（航空宇宙技術研究所）

1. まえがき

航空宇宙技術研究所では、独自に考察したコ分離型ターボファンエンジンによるジェットVTOL機の概念研究を行ってきたが、その成果の一部を発展させた、乗客数２〜４人の小型ジェットVTOL機エンジンシステムの概念研究を行っている1) 2)。このエンジンシステムは、エアタービン駆動方式の超小型リフトファンを同一平面上に多数並べ、全体として必要推力を得ようとする新しい発想によるもので、筆者らは「クラスター・ファンエンジン」と呼称している3) 4)。

本報告は、このクラスター・ファンエンジンによる小型ジェットVTOL機のエンジンシステムについて、その概念検討結果と予想性能等について述べる。

2. クラスター・ファンエンジンの概略
2.1 クラスター・ファンエンジン

クラスター・ファンエンジンの概念図を図1に示す。図のように、このエンジンの要素は超小型エアタービン駆動ファン（左側：クラスター・ファン）とその駆動源（右側：空気源）であるコアエンジンである。クラスター・ファンは、エアタービンとファンだけで構成されており、高温が無いことから構造の単純化が可能で、軽量・小型化や大量生産による価格格化が期待できる。クラスター・ファンについては、前記のように試作・運転試験を行っている。コアエンジンは単純なターボジェットエンジンであるが、圧縮機出口での大量吸気構造となっている点が一般的エンジンと異なる。コアエンジンについては、エンジンメーカーによる概念設計を行っている。

2.2 クラスター・ファン

エアタービンで駆動するファンの形式では、タービンとファンとを発達ギアにより結合する構成が一般的であると考えられるが、このエアタービン部分をファンのチップに装備したチップタービン方式にすれば単機動性を省略することができ、構造の単純化及び軽量化がさらに可能となる。チップタービン方式のファンは、過去にターボジェットエンジンの排気で駆動するVTOL機のリフトファンに用いられたことがある。しかし、クラスター・ファンエンジンはタービンを駆動する空気が圧縮機出口の高圧であるため、周速度の低いチップタービンで十分な効率を得るにはタービンを多段にすることが必要となる。またタービンを駆動する空気流量が少ないため、従来のようなチップタービン方式ではタービン翼の高さが著しく低くなり、空力的成立が難しい。そこで、周方向に段落を有する多段チップタービンを用いたファンを考察した5)。図2に試作したクラスター・ファンとその運転試験を行った様子を、また主な諸元を表1に示す。
図2．試作クラスターファン

このクラスターファンの目標地上静止推力は約800 N（タービン排気の推力を含む）であるが、運転試験によりこの推力が得られることが確認されている6)。試作したファンの材質は中心軸、軸受け及びボルト類を除き全てアルミ合金製である。ローターはハブ、ファン翼筿、ファン翼端シュラウドとタービン動翼が一体となった構造で堅牢強固であり、また全部品点数は9（ボルト類を除く）と非常に単純化されているため、分解・組立は10分ほどで可能である。試作ファンの質量は5.0kgであるが、1kg以上軽量化できる余地は残されており、現在進めてい改良型のファンではファンのみの推力質量比（kgf/kg）は現在の16から20以上となる見込みである7)。

3．クラスターファンエンジンの性能計算

3.1 リフトファンの性能

クラスターファンのリフトファンとして使う場合、得られる最大推力を求める。この場合、ファンの空気源として圧縮比PRc、空気流量Geの圧縮機を想定する。図3に計算ブロックダイアグラムを、また主要な計算パラメータを表2に示す。

図3．性能計算のブロックダイアグラム

表3の設定値において、ファン圧力比は排気速度を100m/s程度になる値とした。タービン断熱効率は、このような形式のタービンであることを考慮して、一般的な値より低くなると想定したものである。また想定圧縮機からの抽気空気（エアタービン駆動空気）を導く抽気ダクトについて
る圧力損失を、圧縮機出口圧力に対する損失率で10％と仮定した。同様に温度損失を1％と仮定した。以上より求める性能値は、PRc及びGcで駆動可能な最大ファンの大きさ及び推力をある。
ここでバイパス比 BPrを次のように定義する。ここにGfはファン流量である。

\[BPr = \frac{Gf}{Gc} \]

駆動可能なバイパス比の最大値はPRcに対して決まるので、その値における最大推力を求めた。これを図4に示す。図で横軸は駆動空気流量Gc、パラメータはPRcである。図2の試作ファンの仕様はGc=0.3、PRc=8であるが、その値に対する推力は768Nに、またファン直径は256mmとなった。本計算では試料ダクトの圧力損失PLdを10％と仮定したが、PLdを10％±10％とした場合の推力変化は、+3.4％～-5.1％であった。またタービンの断熱効率Etaについても、同様に0.74±0.1の変化に対し、推力は13.7～12.9％と変化する。以上のようにPLdの増減に対する推力変化は小さいが、Etaに対しては推力変化が大きいことが分かる。また試作したファンの運転結果と計算値の比較より、Etaの設定値0.74は、ほぼ妥当な値であるといえる。

3.2 ケアエンジン

3.1のリフトファンを駆動するケアエンジンは、圧縮機出口における大量抽気を前提としているが、可能な最大抽気流量を求めた結果を図5に示す。図5はタービン入口温度TITをパラメータとして、圧力比に対する最大抽気流量を、圧縮機流量（ケアエンジン流量）に対する比として求めたものである。これより、PRc=8においてTIT=1323K～1423K（1050～1150℃）では、47～51％の抽気流量が可能であることが分かる。これより図2のファンを駆動するに必要なケアエンジン流量は、1基のリフトファンあたり0.6kg/sとなる。以上の結果をもとに、ケアエンジンの概念設計をエンジンメーカーに委託し、形状及び質量等の概念設計を行った。検討対象は上記の性能を有する、遠心1段圧縮機＋軸流2段タービンの構成によるターポジェットエンジンで、圧縮機出口での大量抽気を考慮した構造である。概念設計の仕様を表3に、得られた結果としてその断面図を図6に示す。この検討結果によれば、ケアエンジンの外形は全長329mm及び幅220mmとなった。またこの概念設計図より推算した質量は15kgであった。
3.3 クルーズファンの性能
クラスターファンを水平にして、クラーズファンとして使用する場合の性能を求める。クルーズファンの性能計算では、図3において想定圧縮機をコアエンジンに置き換えたブロックダイアグラムを用いる。計算に必要なコアエンジンの設定値は TIT=1423K の値とした。また巡航時の飛行条件として、飛行高度 H=7620m (25,000ft) 及び 9144m (30,000ft) においてそれぞれ飛行マッハ数 M=0.4 及び 0.5 とした。以上の計算条件において、クルーズファン圧力比 PRf=1.12〜1.18 に対する最大推力を求めた結果を図7に示す。図7は PRf の変化に対する最大推力を示したものである。ここでファン直径は PRf でほぼ一義的に決まり、3.1 で求めたリフトファンの直径 (256φ) と同じ値をとした場合、PRf=1.14 であった。なお巡航時のクルーズファンネセルの空気抵抗係数 Cd は 0.02 とした。

4. 小型ジェットV T O L 機
4.1 機体規模の検討と質量の推算
クラスターファンエンジンを用いた小型ジェットV T O L 機については、機体メーカーに委託して概念検討を行った。図8に検討対象の機体概念図を示す。図8から分かるように、この機体は垂直離着陸用として垂直に置いたクラスター（リフトファン）を機体重心周りに、ま
た巡航用として水平に置いたクラスターファン（ク
ルーズファン）を垂尾尾翼の左右に装備している。
これより機体形状はカナード形態となる。コアエン
ジンは機体後部に格納されており、入口空気はク
ルーズファン前方にあるインテークから導かれる。機
体規模は、設計離陸質量 $W_{to}=1,500 \sim 3,500$ kg、主
翼面積 $S_w=3.0 \sim 7.0$ m²の範囲で検討を行ったが、最
終的に $W_{to}=2,500$ kg、$S_w=5.0$ m²の規模を選択した。
機体外形寸法等を表5に示す。また機体形状から推
定される空力特性より、$M \leq 0.6$ での揚抵抗比 L/D は8.6
であった。またエンジン以外の質量は表6のように
求められている。ここで主翼・尾翼及び中央翼（リフ
トファン搭載部分）については、複合材構造適用率を
85%、胴体については70%であると想定している。
以上より、エンジン総質量 W_{to} の条件は以下のよ
うになる。

$$W_{to} \leq 2,500 - 2,029$$
$$\therefore \quad W_{to} \leq 471 \text{ kg} \quad (2)$$

またエンジン性能に対する要求値は、リフトファン
総推力 F_{lf} 及びクルーズファン総推力 F_{ef} について
以下のようになる。

$$F_{lf} > 24,517 \text{ N}$$
$$F_{ef} > 24,517 / L/D$$
$$\therefore \quad F_{ef} > 2,851 \text{ N} \quad (3)$$

4.2 エンジンシステム

図9にクラスターファンエンジンによる
エンジンシステムを示す。図で分かるように
このエンジンシステムでは、コアエンジンか
らの抽気空気を、パルプによってリフトファ
ン（離着陸時）とクルーズファン（巡航時）
に切換える。ここでリフトファンに必要とさ
れる総推力は、この切換え時（機体飛行時）
におけるリフトファン推力からクルーズファン
推力への移行に対応した余剰分が必要
である。以上のことより、リフトファンの基
数を20とした。これより F_{lf} は3.1より、

$$F_{lf} = 20 \times 2 \times 768 = 30,720 \text{ N} \quad (4)$$

となり、推力の余剰分は25%である。また
対応するコアエンジン流量は1基あたり、次
のようになる。

$$G_c = (0.3 / 0.5) \times 20 = 12 \text{ kg/s} \quad (5)$$
次にクラーズファンの基数は、表4のクラーズファン計算パラメータ及び（5）式により、コアエンジン1基に対して最大12基である。これより（3）式を満たす条件からクラーズファン基数は表7に示したようになる。

4.3 エンジン質量の推算

コアエンジンの概念設計により推算したエンジン質量は3.2で述べたように15kgであった。一般にこの程度の圧力比のターボジェットエンジンでは、エンジン質量は流量にほぼ比例して増加するとと思われる。これより1基あたりのコアエンジン質量Wcrを（5）式の流量から次のように推定した。

\[Wcr = 12 / 1.5 \times 15 = 120 \text{ kg} \] (6)

またクラーズファンの質量は、推算を簡単にするためにリフトファンと同一値（同一直径）と仮定した（PRfを高くとれば質量は減少する）。以上よりエンジン総質量の推算値は、クラーズファンの基数Ncf及びリフトファン（クラーズファン）の質量Wefで決まり、次式のようになる。

\[Weto = (Wcr + (20+Ncf) \times Wef) \times 2 \] (7)

図10はWefをパラメータとしてNcfに対するエンジン総質量を計算した結果である。この結果と（2）式の条件から、クラスターファンエンジンによる小型ジェットVTOL機は十分成立可能であることが分かった。

5. まとめ

クラスターファンの試作・運転による性能実証をもとに、コアエンジン及びクラーズファンを含めた全体の性能計算と概念検討を行った。

またこのエンジンシステムを搭載する小型ジェットVTOL機の概念検討を行い、総合的な検討を行った結果、クラスターファンエンジンによるこのようなVTOL機が成立立する可能性は十分あることが分かった。

参考文献

1) 齋藤ほか、「ジェットVTOL輸送機の研究」、第40回飛行機シンポジウム講演論文集
2) 松田ほか、「ジェットVTOL無人実験機エンジンシステムの概念検討」、同上
3) 特許願、「多ファン式コアエンジン分離型ターボファンエンジン」、No.03250235.3
4) 齋藤ほか、「クラスターファンエンジン」、第43回航空原動機・宇宙推進講演会
5) 特許願、「単翼列多段タービン」、特願2002-100541
6) 岩瀬ほか、「高圧チップタービン駆動ファンの試作試験」、第43回航空原動機・宇宙推進講演会
7) 岩瀬ほか、「単翼列多段チップタービン駆動ファン」、第31回ガスタービン定期講演会
8) 富士重工、「小型ジェットVTOL機の可能性検討成果報告書」、2002年3月
講演中止
希薄予混合予蒸発燃焼器の保炎器形状と排出特性

*下平一雄 黒澤要治 立花繁 山本武 鈴木和雄（航空宇宙技術研究所）

1. まえがき

高密度を飛行する次世代超音速航空機から排出される窒素酸化物（NOx）の低減は、オゾン層の保護の観点から重要な要求である。希薄予混合予蒸発（Lean Premixed and Prevaporized: LPP）方式は、液体燃料ガスターピン燃焼器のNOx排出量の低減に極めて有効である。しかし、LPP燃焼方式は、予混合予蒸発部での自己着火、逆火防止のため、予混合予蒸発部出口の混合気速度を高めるか分布を均一にすることが重要なことから、燃焼器内部の保炎性能が低下し、低いNOx排出でかつ燃焼効率が高い領域が従来の拡散燃焼方式に比べて狭いことが問題とされている。

本報告は、希薄予混合予蒸発燃焼器において低いNOx排出でかつ燃焼効率が高い領域を拡大するために、燃焼器内部の燃焼状況をPIV法による流速分布、OH*発光分布、ガス濃度分布計測によって可視化し、保炎器形状の違いによる燃焼特性と排出特性について検討した結果を示した。

2. 供試燃焼器と試験装置

図1に示す供試燃焼器模型は、ステージング燃焼方式のアニュラ型燃焼器の一列を模倣した2連バーナ構造である。簡易化のため上下同じ構造の予混合予蒸発管（以下、予混合管と記す）と燃焼器は、光学計測用に石英ガラス製とした。燃料の灯火は、内径50mm、長さ150mmの予混合管内にデラハン社製圧力噴霧ノズルから噴霧され、内筒に衝突して液膜を形成し先端で上流スワーラの旋回気流により微粒化される。また、内筒と予混合管の隙間を通る気流により、旋回流の広がりを抑え液滴が予混合管の壁面付着を防いた。燃焼室は高さ172mm、幅82mm、長さ275mmの箱形で、入口の2個の保炎器間隔は、70mmとした。保炎器を取り付ける隔壁には、遮熱板を取り付け冷却空気で冷却した。

表1に示す供試保炎器は、非旋回

![図1 供試燃焼器模型と試験装置](image)

<table>
<thead>
<tr>
<th>Type</th>
<th>ノズル</th>
<th>1重初-1</th>
<th>逆旋回 2重</th>
<th>逆旋回 2重</th>
<th>外側旋回なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo</td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>Hub Inner Outer</td>
<td>43mm 50mm 32mm</td>
<td>20mm 50mm (partition thickness: 1mm)</td>
<td>10mm</td>
<td></td>
</tr>
<tr>
<td>Vane angle</td>
<td>Inner Outer</td>
<td>30deg</td>
<td>15deg</td>
<td>-15deg</td>
<td>0deg</td>
</tr>
</tbody>
</table>
のノズル型、1重スワーラ、順旋回型2重スワーラ、逆旋回型2重スワーラ、外側回なしみ型2重スワーラの5種類で、開口面積は同等とした。

保炎器後流の流速分布は、PIV（Particle Image Velocimetry）装置により可視化した。Nd:YAGレーザからパルス時間間隔ΔT=5μsで発振された照射レーザ光（λ=532nm）は、シリンドリカルレンズによりシート状に測定場に入射し、空気中に混ぜられたトレーサ粒子（材質Si02、平均粒径2.7μm）による粒子画像をCCDカメラ（ピクセル数1000×1016pixel、バンドパスフィルタ532nm）で捕らえ処理して、速度ベクトル分布を得た。

OH*自発光分布計測には、イメージインターチャ продуктов付CCDカメラ（ピクセル数1024×1024pixel）にOHの化学発光のみを透過させるバンドパスフィルタ（CW:307.1nm）を装着して、発光輝度画像を得た。燃料ガス分析は、現場製作所製MEXA-9110連続ガス分析計を用いて、燃焼器出口では8点集合プローブを上側保炎器後流に、内部分析用には内径2mm、外径12mmの1点式プローブをトラバースして行った。それぞれの計測領域を図2に示す。計測断面は、上側保炎器後流の中心軸上で、座標系は上部に設置された保炎器の中心を原点とし、主流方向をX、鉛直方向をZととした。

表2に試験条件を示す。保炎器からの空気噴出速度(UA m/s)は、エンジン作動条件の高い圧力下でも、逆火、自己着火の起こらない速度とした。

3、試験結果と考察

3-1 予混合予蒸発管出口における混合気状態

予混合管出口（燃焼室入口）での予混合ガス濃度分布と流速分布計測を燃焼状態で行った。図3にTIA=737K、UA=44m/s、E.R=0.6の条件でのTHCの濃度分布を図4に噴出速度分布を示す。図4中の黒色の線は、予混合管の内径を示し、計測位置はX=10mmとした。燃料濃度は、予混合管下
端部で局所当量比にすると 0.5 程度と若干低いために、これは 10mm の計測位置から外部流を含み込んだことによるもので、その他の領域では 0.54 〜 0.59 の範囲内に分布して、ほぼ均一であること。流速分布も中心部で 15m/s ほど低いが逆方向への偏りもなく、旋回成分も小さいことから良好な混合気状態と確認できた。

3-2 保炎器による流速分布と OH*自発光分布の変化

図 5 に TIA=737K、UA=60m/s 条件での保炎器後流の流速分布と OH*自発光強度分布を示す。流速分布と中央列の E.R=0.6 時の流速分布では、ノズル型では変化が見られないが、スワール型では全体に再循環領域が拡大し、スワール流れの広がり角度も大きくなっている。下端に示す OH*自発光強度分布では、ノズル型では OH*自発光強度の強い領域がなく保炎器下流 x=100mm まででは、燃焼があまり進捗していない。スワール型では型によって発光強度の違いがあるが OH*自発光強度の強い領域は、保炎器下流 x=100mm 以内にあり、保炎器後流の再循環領域によって燃焼の進捗を進められている。

ノズル型 1 重スワーラ型 2 重スワーラ型 逆旋回型 逆旋回型 外側旋回型

図 5 保炎器による流速分布と OH*自発光分布の変化（TIA=737K UA=60m/s）

3-3 保炎器による排出特性の変化

図 6 に燃焼器出口での NOx の排出指数（EINOx g/kgfuel）と燃焼効率（ETA %）のガス分析当量比（ERg）による変化を示す。ノズル型の燃焼効率は、TIA=737K では当量比 0.55 以下では大きく低下し、TIA=790K でも当量比 0.5 以下で低下するが、スワール型では全ての型において TIA=737K で当量比 0.45 から、TIA=790K で当量比 0.4 から燃焼効率 99%以上となり、当量比 0.35
図6 EINOxとETAの保炎器による変化
(TIA=737K UA=60m/s)

図7 EINOxとETAの保炎器による変化
(TIA=790K UA=70m/s)

近くまで吹き消えない。これは、外側旋回なし型でも同様であった。当量比0.6を超えた領域での燃焼効率の低下は、燃料ガス温度が上昇したことによりCOの酸化が平衡状態に達したためと考えられる。

NOxの排出量は当量比とともに増加し、ERg=0.55以上では急激に増加する。NOx排出量1700K以上になると急激に増加しているといわれている。TIA=737K、ERg=0.55における断熱火炎温度は約1800Kで、実際のガス温度は放射などの熱損失により断熱火炎温度よりも低いと考えられるが、1700K以上に達していると推測される。TIA=737Kの条件ではNOx排出量の差はノズル方向がやや小さい程度だが、TIA=790K、ERg=0.6条件ではスワーラ型がノズル型に比べ1.6倍ほど高い値となった。スワーラ型は外側旋回なし型を含め、どの型もほぼ同じ排出量となった。

３-4、燃焼器内部ガス分析
スワーラ型保炎器では燃焼器出口でのNOx排出量がノズル形に比べ多いことから、NOxが生成される場所を明らかにするために、順旋回2重スワーラについて燃焼室内ガス濃度分布を計測した。計測領域は、プローブを挿入しても火炎形状の変わらないX=50mmからX=180mmまで上下方向にはスワーラ中心から±40mmとし、PIVによる流速分布計測機を後方に拡大した。

図8に、TIA=737K UA=60m/s ER=0.5における流速分布とO2濃度分布を重ねて示した。X=80mm位置の上下スワーラ流れが衝突する干渉領域から、徐々にO2の濃度が低下し、O2の濃度の低下とともに、流れは加速、拡散され一部は逆流していることがわかる。これは、温度の上昇により、体積流量が増えることで加速され、また粘性が高くなりはく離しやすいこと
によるものと考えられる。ここから、
高温の燃焼ガスが再循環流により
上流へ輸送され、未燃の混合気と混
合されて着火させていると考えら
れる。
図9に、TIA=737K UA=60m/s
ER=0.5における流速分布とCO濃度
分布を重ねて示した。スワール流れ
の流線に沿ってO2の濃度勾配が大
きいところで、COの濃度高くなっ
ていることがわかる。このことから、O2
が反応帯に拡散しCOの濃度が高い領域
で燃焼していると考えられる。また、スワール
流れのせん断流領域では、COの濃度が高いこと
から、スワール流れのせん断流領域で未燃ガス
と既燃ガスが混合され、燃焼していると考えら
れる。上下のスワール流れが衝突干渉している
X=50mm位置ではCOの濃度は低いが、下流へい
くにしたがって高くなり、X=100から110mの位
置にピークがみられる。このことから、スワー
ル流れの衝突によって既燃ガスと未燃ガスの
混合が促進され、衝突した位置よりも下流で
燃焼していると考えられる。
図10にはNOxの濃度分布を図11に局
所燃焼効率分布と流速分布を重ねて示し
た。局所燃焼効率は、スワール流れのせ
ん断流領域および干渉領域で急激に増加
していることがわかる。再循環領域およ
びその下流では、燃焼効率が99.5%以上
に達している。再循環領域の終端位置
X=130mmよりも下流でスワール流れの流
線に沿ってみると、燃焼効率の上昇とと
もに、NOxの濃度が高くなることがわか
る。この領域では燃焼が99.8%以上に達していて、温度も高く流速も低下
しているため滞留時間が長くなりNOxが生成されていると考えられる。また再循環流の流線に
沿ってNOxの濃度をみると、再循環領域における濃度は、増加していないことがわかる。これは、
再循環領域内の乱れが強く未燃の混合気流れ、すなわち温度の低い流れを混合することでガス温
度が下がるためNOxの生成速度が遅いためと考えられる。さらに、希薄予混合燃焼器の再循環領域で
は、領域に流入する燃料ガスの温度が拡散燃焼に比べると低いため、よりNOx生成速度が遅くなると推測される。

まとめ

希薄予混合予蒸発燃焼器において低いNOx排出でかつ燃焼効率が高い領域を拡大するために、燃焼器内部の燃焼状況をPIV法による流速分布、OH*発光分布、ガス濃度分布計測によって可視化し、保炎器形状の違いによる燃焼状況と排出特性の関係について調べ、以下のことがわかった。

1. 予混合管出口にスワーラ型保炎器を設けることで、ノズル型保炎器に比べより低い当量比まで高い燃焼効率が維持できることがわかった。それは内側にのみスワーラも設けたタイプでも同様の効果が得られた。

2. 順流回2重回流スワーラ型保炎器の火炎構造を調べた結果、スワーラ流れのせん断流領域および干渉領域において活発に燃焼し、ノズル型にくらべ短い燃焼器長さで高い燃焼効率に達していた。

3. スワーラの形状により、火炎形状、再循環領域の形状、スワーラ流れの干渉は異なるが、NOxの排出量への影響は小さく、希薄予混合燃焼における再循環領域でのNOxの生成量は少ないと考えられた。

4. 希薄予混合燃焼器にスワーラ型保炎器用いることで、ノズル型に比べ燃焼器長さを短くでき、高燃焼効率、広い安定作動範囲を維持しつつ、低NOxの実現も期待できる。

本研究は、経済産業省の「環境適合型次世代超音速推進システムの研究開発（ESPRプロジェクト）」の一環として行った。

本研究に進めるに当たり、青山学院大学大学院理工学研究科福田和史君の協力を頂いた。

ここに記し、謝意を表する。

参考文献

希薄予混合燃焼における円錐形保炎器及び
旋回流型保炎器の燃焼特性の比較

＊山本浩、黒澤要治、立花繁、Laurent Zimmer、下平一雄、吉田滋二（航空宇宙技術研究所）

1. まえがき

ガスタービンからのNOx排出量を低減するためには、希薄予混合燃焼方式を用いることが最も有効な手段であるとされている。しかし、予混合燃焼は拡散燃焼に比べて安定かつ高効率で燃焼する当量比範囲が狭いという欠点を持つ。当量比が均一な予混合燃焼において、様々な保炎器の安定性、排出特性が調べられているが、全体の性能のみに注目しており、火炎構造などについては明らかにされていない。

また、パイロットバーナーをもつ旋回流型でない保炎器による予混合燃焼は十分に研究されているとは言えない。前報では、小型のパイロットバーナーを備えた円錐形保炎器により、希薄限界近くの全体当量比において、高い燃焼効率と低いNOx排出濃度が得られること、パイロット燃料量によって燃焼効率が制御可能であることを示した。その後、広く用いられている旋回流型保炎器との燃焼特性の比較を行ったのでその結果について報告する。

2. 実験装置及び方法

2.1 保炎器モデル

本研究では供試保炎器として、円錐形保炎器、2重のスワーラをもつ旋回流型保炎器を用いている。

図1に円錐形保炎器のコンセプトを示す。この保炎器は振動に似た形状をもち、パイロット予混合気は左端部に開けられた孔より、メイン予混合気は円錐の側面に開けられた8本のスリットより流入する。保炎器内側に流入したパイロット予混合気は、左端部内側にできる再循環領域に取り込まれ、パイロット火炎を形成する。そこで生成された既燃ガスは放射状に伸びる槽体に沿って外周部まで供給される。スリットを通って保炎器内側に流れ込んだメイン予混合気は、この既燃ガスと接触・混合することにより燃焼する。このように物体表面を用いて既燃ガスをメイン予混合気に導く方法は、旋回流保炎のような再循環領域から乱れによって既燃ガスを供給する方法に比べて、既燃ガスの濃度を保ったまま供給できるという点で効率が良く、高濃度のNOxを生成するパイロット予混合気を多く必要としないと考えられる。

図2は下流側から見た円錐形保炎器である。直径は100mm、深さは90mmである。図3は下流側から見た旋回流型保炎器である。内側の小さいスワーラを通してパイロット予混合気が、外側のスワーラを通してメイン予混合気が供給される。2つのスワーラは共に、翼の中央における燃焼器中心軸と30°の角度をもつ螺旋型スワーラであり、全体のスワーラ数は0.45である。パイロット部窓は円錐形保炎器のパイロット部と同形状としている。また、メインスワーラの開口面積は、円錐形保炎器スリット部の
燃焼器中心軸と直交する面への投影面積と等しくした。

図 2 円錐形保炎器
図 3 旋回流型保炎器

2.2 実験装置

図4に実験装置の概略を示す。保炎器は円管（内径100mm）内に置かれており、左側にはパイロット用予混合管が接続されている。円管の右側は石英ガラスの窓をもつ直方体の燃焼室（内法100mm×100mm×214mm）が取り付けられており、燃焼室の右方は大気圧に開放されている。左方より電気ヒーターにより加熱された空気が流入し、パイロットミキサー、メインミキサーにおいて燃料であるメタンと混合される。より均一な予混合気を得るため、メインミキサーは多数の空気通路を持ち、その内面から燃料を噴射する構造となっている。メイン予混合気、パイロット予混合気はミキサーを出た後、それぞれの通路を通り、保炎器に供給される。燃焼器出口中心を原点にとり、燃焼器軸方向をx、水平方向をy、鉛直方向をzとする。

図4 実験装置概略
2. 3 実験条件

本研究では、希薄条件における排出特性、並びに高負荷条件において両保炎器で発生する燃焼振動に注目した。前者の実験条件を表1に示す。UCは燃焼室断面平均流速（全予混合気の体積流量を燃焼室断面積で除した値）、Taは供給空気温度、ERcは全体当量比である。PPは全燃料量に対するパイロット燃料の割合である。

2. 4 計測

本実験では、主にガスサンプリングによるガス濃度計測、燃焼室内圧力計測を実施した。サンプリングプローブの外形は8mm、プローブ先端に設けられたガス吸引口の直径は1.6mmで、プローブ全体が温水で冷却されている。ガス分析計は堀場製作所製MEXA-9110Hを用い、6成分（CO, CO₂, THC, O₂, NOₓ, NO）の濃度を計測した。圧力変換デューサはKulite社製XMT-190を使用し、水冷アダプタを介してx=-178, z=0の位置に取り付けられている。実験結果中に示すNOx濃度はH₂Oを考慮した値（Wet）である。本研究では、燃料消費割合FCP[％]を次式により定義している。ただし、C_i[ppm]は化学種iの濃度であり、C_THCは全てのTHC分子の炭素原子を1つしか含まないとしたときの濃度である。

$$\text{FCP} = \frac{C_{CO}}{C_{THC} + C_{CO} + C_{CO₂}}$$

3. 実験結果及び考察

3. 1 希薄条件における燃焼の進捗

図5、6は、全体当量比ERcのみが異なる条件1と2のときのy軸上燃料消費割合FCP、NOx濃度の分布を比較したものである。図5より、FCP燃料消費割合は、円錐形保炎器についてはどちらの条件
においても、y 方向全体にわたり高い値を示していることがわかる。一方、旋回流型保炎器では FCP は条件 1 において y 方向全体にわたり高い値を示しているが、条件 2 においては壁より 5mm, 10mm の位置において大きく低下していることがわかる。これは、円雉形保炎器が円雉底面の周辺部においても炎を保持しているのに対して、旋回流型保炎器では条件 1 において生じる急拡大部火炎が条件 2 において存在せず、壁面に沿って流れれる希薄な気体混合気の燃焼が緩慢となっているためである。図 6 より、NOx 濃度に対する保炎器形状の影響は小さく、ERc の影響が大きいことがわかる。このことは、文献 (1), (2) の結論と一致している。

図 7 は供給空気温度 Ta のみが異なる条件 1 と 5 のときの y 軸上 FCP 分布、図 8 は燃焼室断面平均流速 Uc のみが異なる条件 1 と 7 のときの y 軸上 FCP 分布を比較している。旋回流型保炎器においては、Ta を下げたとき、Uc を高めたとき共に、ERc を下げたときと同様に、壁面付近で FCP が低下している。したがって、円雉形保炎器は旋回流型保炎器と比較して、短い距離で燃焼を完結できることがわかる。

![図 7 燃料消費割合分布（供給空気温度の影響）](image1)

![図 8 燃料消費割合分布（平均流速の影響）](image2)

3.2 燃焼促進のための制御

図 9, 10 はそれぞれ、バイロット燃料割合 PP のみが異なる条件 3 ～ 6 （条件 6 は旋回流型保炎器のみ）のときの y 軸上燃焼消費割合 FCP、NOx 濃度分布を示している。図 9 より、円雉形保炎器では PP の増加に従って FCP が高まっているが、旋回流型保炎器では壁面付近の低い燃料消費割合を十分高めることはできず、PP=5.0% のときは図 10 より NOx 濃度がかなり高くなっていることがわかる。

図 10 より、円雉形保炎器ではなく PP によって NOx 濃度が 1ppm 程度変化していることがわかる。これは PP の増加により、再循環領域内の温度が高くなっているためである。十分な燃焼効率を得るための必要最低限のバイロット燃料を投入することにより、NOx 排出濃度を低く留めることができる制御が、円雉形保炎器を用いることにより可能となる。一方、旋回流型保炎器では、PP が 2.3 ～ 3.0% において、NOx 濃度に大きな変化はない。これは旋回流によって大きな再循環領域が形成され、メイン予混合気が多く混入するため、少量のバイロット燃料の変化では再循環領域内の温度を大きく変化させることができないからであると考えられる。旋回流型保炎器を用い、短い燃焼器で高い燃焼効率を得るためには、メイン予混合気の当量比を高めるか、バイロット予混合気の量を増やす、したがって全体当量比を高める必
要があり、それに伴いNOx排出量が増加する。

図9 燃料消費割合分布（全体当量比の影響）

図10 再循環領域内当量比

3.3 燃焼振動

断面平均流速Uc=15m/s、供給空気温度Ta=700K、パイロット燃料割合PP=2.0に保ったまま全体当量比EReを増加させると、旋回流型保炎器ではERe=0.58のとき燃焼振動が発生した。図11にはそのときの燃焼室内圧力のパワースペクトルが示されており、1つの高いピーク（463Hz）をもつことがわかる。この周波数は予混合管の長さを1/4波長とする振動に相当する。一方、円錐形保炎器ではERe=0.65のときに燃焼振動を生じ始めたが圧力変動は小さく、前述の旋回流型保炎器によるピークと同程度の強度となるのはERe=0.70のときであった。図12には、このときの燃焼室内圧力のパワースペクトルが示されており、主に2つのピーク（490, 805Hz）が見られる。490Hzの振動は前記の旋回流型保炎器によって生じた振動と同様、予混合管の共振により発生したと考えられる。805Hzの振動は、パイロット部から燃焼器出口までの距離を1/4周期とする振動に相当する。以上のことより、円錐形保炎器では旋回流型保炎器と比較して、燃焼振動が発生するEReが高く、同じEReで比較したときの振動の強度が小さいと言える。これは旋回流型保炎器により保持された火炎が短いため、発熱が狭い領域に集中し、強い燃焼振動が発生するのに対して、円錐形保炎器ではパイロットから急拡大量にわたって広い燃焼領域が存在するため、発熱が分散するためであると考えられる。円錐形保炎器でUc, Ta, EReを同じ値に保ったままPP=1.2%とすると、805Hzのピークが消え990Hzに新しいピークが生じるとともに、低い周波数のピーク（495Hz）が高くなった。周波数990Hzは燃焼室長さ1/4周期とする振動に相当する。この低周波数のピークの強度増大と高周波数のピークの移動は、発熱がパイロット部で少なくなり急拡大量に集中したことにより、燃焼室を1/4波長とする振動が強くならとに予混合管の共振が強くなったため起こったと考えられる。このことは、十分なパイロット火炎をもつ円錐形保炎器が、長い火炎を形成することにより燃焼振動の抑制効果をもつことを示している。
図11 振動燃焼における圧力変動の周波数解析

4. まとめ
メタンと空気の希薄予混合燃焼において、円錐形保炎器と旋回流型保炎器の燃焼特性を比較した結果、次の結論が得られた。

・旋回流型保炎器では、希薄条件において、メイン予混合気旋回流の外周部において燃焼の進行が緩慢である。
・旋回流型保炎器では、メイン予混合気による希釈効果により、燃焼の進行、NOx排出濃度に対するパイロット燃料量の影響が小さい。
・円錐形保炎器では、十分なパイロット燃料量を与えることにより広い燃焼領域が形成され、燃焼振動が発生する当量比を高めると共に、その強度が低減される。
今後は高圧燃焼実験を行い、圧力の燃焼安定性、NOx排出量への影響を調べる予定である。なお、今回行った実験条件で逆火は起こらなかった。

参考文献
(2) Jeffrey A. Lovett and Nesim Abuaf, Emissions and Stability Characteristics of Flameholders for Lean-Premixed Combustion, ASME, 92-GT-120
(3) 山本武、黒澤愛治、立花繁、下平一雄、鈴木和雄、パイロット火炎を伴う円錐形保炎器の燃焼特性、第30回ガスタービン定期講演会講演論文集、2002.10、pp.79-84
筒状火炎を用いた2段希薄予混合燃焼

*高木 秀幸 (法大院)
*曾田 直樹 (法大院)
*山田 秀志 (航技研)
*林 茂 (航技研)
*川上 忠重 (法大)

1. まえがき
ガスターピンから排出されるNOxは大きな環境問題となっており、大気汚染防止のため、厳しく規制されている。NOxは、酸性雨や、光化学スモッグを引き起こす原因となっており、高空での航空機からのNOx排出はオゾン層破壊の原因となっている。

ガスターピンでは排出されるNOxの大部分はThermal NOxである。Thermal NOxは主に1800K以上の高温で急速に生成され、燃焼領域内でこうした高温部分があるとそこからNOxが生成される。そのため、NOx排出を抑制するには、混合気の希薄化、均質化によって燃焼ガス温度を平均的に低くできる希薄予混合燃焼が有効である。しかし、希薄予混合燃焼は当量比が低いと火炎が不安定となり未燃焼成分を排出して燃焼効率の低下を招き、当量比が高いと燃焼ガス温度が高くならない、急激にNOx排出が増加する。このような希薄予混合燃焼では、低NOx、高い燃焼効率の両立ができず範囲が狭い範囲に限らざるをえぬ。低NOx排出の下で作動範囲を拡大するため、高温の既燃ガス中に予混合気を噴射する2段希薄予混合燃焼法が研究されている。超希薄な混合気でもその温度が十分に高ければ反応して熱を発生する。したがって、高温の既燃ガス中に予混合気を噴射し混合することにより、通常では燃焼できないような希薄な状態でも反応させることができる。しかも、既燃ガスに比べて予混合気の温度は低いため、予混合気と既燃ガスの混合は既燃ガスの温度を一時的に低下させることからNOxの抑制が期待できる。また、NOxはHC（ハイドロカーボン）に還元されることからもNOxの低減が期待できる。

2段希薄予混合燃焼は1段目の既燃ガス中に予混合気を噴射するため、1段目の保炎が重要となる。近年、予混合気をスリットから接線方向に噴射すると、円形断面の直径の一定の筒状火炎が形成されることがわかった。この火炎の内側は高温の既燃ガス、火炎の外側は密度の大きい未燃ガスのため流れの回転に対して非常に安定している。本実験では、この筒状火炎を保炎に用いて、簡単な燃料制御だけでなく広い作動範囲を確保し、低NOx化をはかるため2段希薄予混合燃焼のNOx排出特性を調べた。

記号
Tin1：燃焼器入口での1次予混合気温度 [℃]、Tin2：燃焼器入口での2次予混合気温度 [℃]
WA1：1次空気流量 [g/s]、WA2：2次空気流量 [g/s]、WAT：全体空気流量 [g/s]
WF1：1次燃料流量 [g/s]、WF2：2次燃料流量 [g/s]、WFT：全体燃料流量 [g/s]
ϕ1：1次当量比、ϕ2：2次当量比、ϕT：全体当量比
U1：1次側出口断面平均流速 [m/s]、U2：2次側出口断面平均流速 [m/s]
2. 実験装置および方法

2.1 実験装置

図1に実験装置の概要図を示す。燃焼器の1次側の空気はコンプレッサー、2次側の空気はブロアより供給される。1次側空気は2台のマスフロコントローラ、2次側空気は体積流量計で流量制御され、電気ヒーターにより加熱され、スタティックミキサへ入る。本実験では1次、2次燃料ともにメタンを使用した。1次、2次燃料はマスフロコントローラで流量制御され、スタティックミキサへ入り加熱された空気と混合する。1次、2次予混合気の温度T1n、T2nは燃焼器入口でK熱電対により測定する。各計測器から出力された空気流量、燃料流量、温度の電気信号はデータロガーに集められる。コンピュータのディスプレイには空気流量、燃料流量、流速、当量比、温度などが常に表示される。

図2 燃焼器の概略図

図3 燃焼器

図4 燃焼器内管のスリット
本実験で使用した燃焼器の概略図を図2に、燃焼器の写真を図3に示す。燃焼器の2つの内管には、回転上から接続方向に4箇所に等配に長方形のスリット（図4）が取り付けられている。燃焼器のスリットからは、予混合気が接続方向に噴射され、筒状火炎が形成される。1次側のスリットの大きさは軸方向25mm、長さ3mm、2次側のスリットは軸方向50mm、長さ6mmである。燃焼器の1次側の出口は直径41.5mm、2次側の出口は直径65mm、燃焼筒の直径は100mmとなっていて、出口において内径が80mmに裁られている。燃焼筒の外周部は熱損失を防ぐため断熱材で被ってある。燃焼器前面にはガラス窓が取り付けられていて、燃焼器内部の火炎の様子を観察できるようになっている。

2.2 実験方法

実験条件を表1に示す。1次、2次断面積平均流速U1, U2は空気流量と各断面積から計算した。なお、U2は1次、2次断面積平均流速WA1とWA2の合計から計算した。1次、2次断面積平均流速の比は1.0で、燃焼器内に空気と燃料流を流す。ガス分析は温度冷却式ガスタコーン（12孔の高温プローブ）で燃焼器出口から15mm上流の位置における燃焼ガスを採取して、燃焼ガス分析装置でNOx、NO、THC、CO、CO2、O2の各成分の濃度を測定した。分析ガスの組成からNOx排出（15％O2換算濃度）、燃焼効率、全体当量比φを算出した。

Tin1, Tin2[°C]	WA1 [g/s] (U1 [m/s])	WA2 [g/s] (U2 [m/s])	φ
200	10 (10)	20 (12.4)	0.75
300	8.5 (10)	16.9 (12.4)	Varied
400	7.1 (10)	14.2 (12.4)	0.65

表1 実験条件

3. 実験結果および考察

3.1 入口温度による排出特性の比較

図5に入口温度によるNOx排出および燃焼効率を比較した結果を示す。なお、この実験結果は1段燃焼のみのデータである。WA1とWA2の比が1:1では入口温度400℃で逆流したとき、1:2の条件で実験を行った。NOx排出ピークは200、300、400℃で27、46、85ppmとなり、入口温度が高いほどNOx排出のピークは大きくなっている。これは入口温度が上昇したことによって火炎温度が上がり、NOxの生成が促進されたためである。φ1が理論燃空比に近い値でNOx排出是ピークになり、それよりもφ1が過濃になるとNOx排出は減少していった。

図5 入口温度による排出特性の比較
3.21段燃焼と2段燃焼の比較

図6は1段燃焼と2段燃焼のNOx排出、燃焼効率を比較したものである。完全燃焼させた1次の既燃ガス中に2次燃料を噴射していき、排出特性を調べた。1段燃焼についてはφ1=1.1から保炎限界付近のφ1=0.6までの排出特性を調べた。1段燃焼の場合当量比を上げるほど、急激にNOx排出が増大した。これは、火炎温度が上昇したことによって、NOxの生成が促進されたためである。それに対して2段燃焼では2次予混合気を噴射していくとNOxの排出が徐々に減ってゆき、全体当量比φTが固定した1次当量比φ1=0.75とほぼ同じφT=0.7になったところでNOx排出が同じレベルになった。2次予混合気を噴射して燃焼ガス温度が上昇しているにも関わらず、NOx排出量は減少している。これは1段目から排出されたNOxが2段目の予混合気によって還元されているためと思われる。燃焼効率はφ2が常温では反応できない極めて希薄な条件でもほぼ100%となかった。高当量比において燃焼効率が低下しているが、これは単独燃焼によって生じたCOのためである。

3.32次空気流量を変化させることによる排出特性への影響

図7は2次空気流量を変化させることによるNOx排出、燃焼効率への影響を示したものである。1次空気流量に対して、2次空気流量が増すと燃焼効率が上がっているが、これは2次燃料を供給する前のガス温度が低くなり2次当量比φ2が低いときには反応しにくくなるためである。NOx排出は、2次空気流量を増やしていくほど、全体的に低下している。これは、2次空気流量を増やしていくと燃焼ガスの流速が増し滞留時間が短くなっているためである。また、2次空気流量を増やすときWF2=0の時のφTが低く設定できる。WF2=0のときと同レベルでNOx排出を抑えるとすると、φTの値がWA1=10g/sに対してWA2=10g/sでは約1:2、WA2=20g/sでは約1:3、WA2=30g/sでは約1:4と低NOx排出の下での作動範囲を広くとることができる。
図 8 は全体当量比φT から計算した断熱火炎温度と NOx 排出および燃焼効率との関係を示したものである。2 次燃料を噴射すると燃焼効率が下がっていき、WA2=20g/s では 1520K、WA2=30g/s では 1690K で完全燃焼した。2 段希薄混合燃焼において 2 次燃料が噴射された直後から完全燃焼する当量比までは、未燃焼成分が排出され燃焼効率が低下してしまう問題がある。この問題の解決法として、1 次当量比を高めに設定しておき、負荷の上昇に合わせて 1 次当量比を減少させる方法が考えられる。WA2=10、20、30 g/s のどの条件でも NOx は 1800K 付近から増加している。この結果から 2 段希薄混合燃焼においても、燃焼ガス温度が 1800K 以上になると Thermal NO の特性が現れてくることがわかる。

3.4 1 次当量比を変化させるにによる排出特性への影響

図 9 は 2 段燃焼において 1 次側の当量比を低くすることによる NOx 排出、燃焼効率への影響を示したものである。WA1 と WA2 の比については、1/3 の条件で実験を行った。φ1=0.65 の時に比べて φ1=0.55 の時には燃焼効率は低下するが、NOx 排出量が少なくなってしまい、WF2=0 の状態から全体当量比が 0.6 付近まで NOx 排出量が 5ppm 以下と極めて高い値となっている。産業用ガスタービンからの NOx 排出規制は、大気汚染防止法の施行令では 16%残存酸素濃度で 70ppm（15%残存酸素濃度で 84ppm）であるので、本実験では、非常に低い値となっていることがわかる。この結果から 2 段希薄混合燃焼において 1 次の当量比を低くすると、2 次空気流量を増加させた場合と同様に、より NOx 排出量を少なくできることがわかる。
4. 結論

この研究の主な結果は次の通りである。

(1) 筒状火炎を用いた2段希薄予混合燃焼を用いることによって、広い当量比の範囲にわたって高い燃焼効率、低 NOx の両立ができる。

(2) 1次側の燃焼ガス中に予混合気を噴射することによって、1次側から排出されたNOxを還元することができる。

(3) 2次側の空気流量の増加に伴い、燃焼効率は低下するが燃焼ガスの滞留時間は短くなりNOx排出は減少する。

(4) 2段希薄予混合燃焼においても、燃焼ガス温度が1800K以上になるとThermal NO の特徴が現れてくる。

(5) 1次側の当量比を低くすれば、よりNOx排出を抑制できる。

参考文献

燃焼ガス中に噴射された気化燃料—空気混合気の燃焼と NOx 生成
（第二報　一方が過剰混合気の場合について）

＊倉田 直樹 （法大院）
高木 秀幸 （法大院）
林 茂 （航技研）
山田 秀志 （航技研）
川上 忠重 （法大）

1．まえがき

コンシュレーションシステムや複合サイクル発電の開発に伴い、地域分散型エネルギー社会の実現の観点から、ガスタービンに対する期待は益々高まりつつある。特に、液体燃料を用いたガスタービンは、天然ガスの供給が困難な地域においても使用が容易であるため、その需要は大きいものの、ガス焚きガスタービンよりも NOx の低減が困難である。

希薄予混合燃焼は NOx 排出の低減に極めて効果的な手段であるが、完全燃焼と低 NOx を同時に実現できる装置の開発が求められている。これに対して林らは、希薄予混合燃焼器の中希薄予混合気を噴射する革新的な二段燃焼方法 “lean-lean two-stage combustion” を、ガスタービン燃焼器の新しいコンセプトとして提言してきた。前報では燃料に石油を用い、一段目で希薄予混合予混合(LPP)燃焼させた高温の燃烧ガス中に希薄予混合気を噴射する二段燃焼の実験を行った。この結果から、燃焼ガス中に予混合気を噴射する二段燃焼では、一段目からの燃焼ガスと二段目からの予混合気の混合を促進させることが非常に重要であること、また液体燃料を用いた場合でも非常に広い作動範囲で完全燃焼と低 NOx 化が同時に実現できることができることを示した。

本報告では、一段目で希薄 “lean” 燃焼あるいは過剰 “rich” 燃焼させ、その高温燃焼ガス中に予混合気を噴射したときの二段燃焼の結果について述べる。

【記号】

T_0 : 一次予混合気温度 [K]
T_r : 二段空気温度 [K]
W_a : 一次空気流量 [g/s]
W_2 : 二次空気流量 [g/s]
W_{2am} : 二次酸化化用空気流量 [g/s]
W_f : 一次燃料流量 [g/s]
W_2 : 二次燃料流量 [g/s]
ϕ_1 : 一次当量比
ϕ_2 : 二次当量比
ϕ_3 : 全体当量比

Fig.1. Schematic and photograph of experimental combustors.
2. 実験装置

今回の実験で使用した実験装置は空気を加熱するヒータ、一段目の予蒸発予混合気を生成する蒸発管、その予混合気を均質にするスタティックミキサー、一段目の燃焼ガス中に二段目から予混合気を噴射し燃焼させる燃焼器から構成されている。燃焼器の概略図と写真を図1に示す。一段目は液体燃料の均質な予蒸発予混合気を多孔板保炎管で燃焼させ、二段目の空気と燃料の予蒸発予混合気は多孔板保炎管の中心を貫いたインジェクションチューブから噴射する。インジェクションチューブは内径25 mm、外径28 mmの石英管で、保炎管から27 mm下流に突き出ていて、その出口から155 mm上流に気流微粒化ノズルと空気を巻き込むスワラーが取り付けられている。ノズルから噴射された燃料はインジェクションチューブの出口に達するまでには完全に蒸発している。燃焼筒は内径80 mm、外径83 mm、長さ200 mmの石英管で内部の燃焼状態が観察できる。

図2は空気と燃料の流れを示した実験装置の概略図と外観写真である。一段目の空気はブロアから供給され、オリフィス流量計によって流量を測定した後、電気ヒータで加熱され、蒸発管へと送られる。蒸発管内では、高温空気中で圧力噴射ノズルから燃料の灯油が噴射され、一次側の予蒸発予混合気を生成する。蒸発管の内部には液体燃料が蒸発管壁に付着するのを防止するために、微細な孔が多数空いたコーンが入っている。さらに蒸発管を通った予蒸発予混合気はスタティックミキサーで均質に混合され、多孔板保炎管に送られる。

二段目の空気はベビーコンプレッサから供給され、燃焼用燃料微粒化用に分けられた後、マスフローメーターによって流量が制御・測定される。微粒化用空気はそのままノズルへ、燃焼用空気は電気ヒータで加熱しインジェクションチューブへ送られる。ヒータ出口から燃焼室にいる一次予混合気、二次空気の配管は熱損失を防ぐために断熱材で被われている。燃料タンクから送られた燃料はマスフローコントローラによって制御・測定される。

Fig.2. Schematic and photograph of experimental apparatus.
3．実験方法及び条件
実験は、インジェクションチューブから空気だけを噴射し、一段目だけで燃焼させる一段燃焼と、一段目の混合気を希薄、もしくは過濃な状態で燃焼させて、その燃焼ガス中にインジェクションチューブから予混合気を噴射する二段燃焼を行った。一次側を希薄化した燃焼方法を“lean-rich two-stage combustion”（以下、L-R燃焼）、また過濃化した燃焼方法を“rich-lean two-stage combustion”（以下、R-L燃焼）と呼ぶ。一段燃焼では一次燃焼領域が過濃の場合も行っており、その時は一般にNOxの低減に効果的であるとされている“rich-lean combustion”と同じ態となる。

燃焼条件は、燃焼用空気温度$T_{a1}=T_{a2}=500$ K、一次の空気流量$W_{a1}=4.0$ g/s、微粒化用空気$W_{a2}=0.2$ g/sで固定した。一段燃焼では二次の空気流量$W_{a2}=8.0$ g/sで一次の当量比を変化させ、二段燃焼では二次の空気流量$W_{a2}=8.0, 12$ g/s、一次の当量比$\phi_1=0.68, 0.75, 1.70$の組み合わせで二次の当量比を変化させた。

燃焼ガスは36個の孔を持つ十字型冷却式プローブを使用し、保炎器から190 mmの位置で採取した。採取されたガスは加熱チューブを通じプローブから連続ガス分析装置まで送られ、NO、NOx(NO+NO2)、THC(炭化水素)、CO、CO2、O2の各成分濃度が変化される。各成分の測定は、それぞれCO、CO2は非分散型赤外線吸収法(NDIR法)、NO、NO2はケミカルレセプサス法(化学発光法)、THCはベーコンイオン化検出法(FID法)、O2は磁気圧法によって行った。

4．実験結果及び考察
4-1 Lean-rich two-stage combustion と rich-lean two-stage combustion の火炎の形態

Fig.3 Photographs of lean-rich and rich-lean two-stage combustion flames.

Download service for the GTSJ via 54.70.40.11, 2020/04/05. —95—
図3はL-R燃焼（ψ₁＝0.75）とR-L（ψ₁＝1.70）燃焼の代表的な炎の写真である。燃料を供給していない（ψ₁＝0.0）ときのL-R燃焼とR-L燃焼についてW₀₂＝8.0 g/sの場合で比較する。L-R燃焼では一段目の炎がインジェクションチューブ出口より上流で閉じているのに対して、R-L燃焼ではインジェクションチューブ下流にまで達している。これはR-L燃焼では一段目が過濃燃焼であるため、一次燃焼領域では空気不足で、インジェクションチューブから噴射される二次の空気によって、一段目の未燃焼成分が反応しているためである。W₀₂＝12.0 g/sの場合には、L-R燃焼の一段目の火炎はW₀₂＝8.0 g/sの火炎より短くなっている。これは燃料ガスと二次空気の混合が促進されたためである。

二次燃焼を加え全体当量比ψ₁＝1.0にしたL-R燃焼では、W₀₂＝8.0 g/sの場合、一段目と二段目の火炎がはっきり分離しているのに対して、R-L燃焼では一段目の火炎の上に二段目の火炎が重なっている。

次にW₀₂＝8.0 g/sを12.0 g/sに増やした場合には、L-R燃焼は二段目の火炎が短くなっている。またR-L燃焼では一段目と二段目の重なり合った火炎が短くなっている。火炎の短縮は二次空気流量を増加させると一段目の火炎が短くなっていることからも説明できる。

4.2 一段燃焼と二段燃焼（lean-rich and rich-lean two-stage combustions）のNOx生成と燃焼効率

図4にW₀₂＝8.0 g/sで一段燃焼と二段燃焼（L-R燃焼、R-L燃焼）時のNOx生成と燃焼効率を比較する。一段目から全域燃焼を供給し、インジェクションチャートから空気のみを噴射している一段燃焼の場合、NOx排出特性はψ₁を増加させると急激に増加しψ₁＝0.3付近でピークを迎え、その後減少しψ₁＝0.5（ψ₁＝1.5）付近で極小となる。これは一次側の当量比が1となったためNOx排出がピークとなり、さらにψ₁を増加させることによって一次側が過稀燃焼となりNOxの生成が減少するためである。さらにψ₁を増やしていくと再びNOxが増加している。これは全体当量比が1近づくため、NOxの生成が再び増えて始めるからである。ψ₁が0.8以上では、蒸発により灯油を完全に蒸発させることができなかったため試験ができないかった。

L-R燃焼では、ψ₁＝0.68、0.75に固定し、ψ₂を増加させてNOx排出と燃焼効率を調べた。二段目に燃料を加えるに従いNOxは減少し、その後増加する。これは前報で示した傾向と同じである。さらにψ₂を増加させていくとψ₁＝1付近でNOx排出はピークとなり再び減少し始める。一段燃焼の場合と同様に
に、燃焼器全体の当量比が1に近づいたためにNOx排出が増加している。φI=0.68の場合、二次燃料を加えた直後に燃焼効率が下がっているのは、二次燃焼領域の温度が十分に高くないためである。

一方、φI=1.7に固定してφ2を増加させるR-L燃焼の場合、NOx排出は一段燃焼と同様に増加し、φI=1.0付近でピークに達し、その後減少する。燃焼器全体での当量比がすでに高いところから二次燃料を加えているためNOx排出も増加している。

一段燃焼のNOxが低い領域（0.4<φI<0.8）で一段燃焼とR-L燃焼を比較すると、R-L燃焼の方がNOxの排出が半減している。この結果より、一般にNOxの低減に効果的であると言われている“lean-lean combustion”よりR-L燃焼の方が低NOx化が可能である。また、R-L燃焼とR-L燃焼を比較すると、R-L燃焼はスタートの当量比が低く設定できるため作動範囲を広くとれるのでに対して、R-L燃焼ではスタートの全体当量比がすでに高いため作動範囲が狭くなる。

図5に全体当量比に対するCOとTHCの排出を示す。どの燃焼法においてもTHC排出は全体当量比を増加させても常に低いレベルであるのに対して、CO排出はφI=0.8付近から急激に増加する。COの増加は熱分解による影響が大きく、図4に示した燃焼効率の低下の一因である。

4.3 二次空気流量を変化させた二段燃焼（lean-rich and rich-lean two-stage combustions）

二段燃焼の二次空気流量を8.0 gsから12.0 gsに増やした場合のNOx排出と燃焼効率について調べた。図6に全体当量比に対するR-L燃焼とR-L燃焼のNOx排出と燃焼効率を示す。R-L燃焼とR-L燃焼の二段燃焼とも、二次空気流量の増加によりNOx排出レベルが低くなっている。これは二次空気流量の増加によって、燃焼ガスの滞留時間が短くなったためである。R-L燃焼とR-L燃焼のNOx排出レベルは、φIが0.8より小さいとき、R-L燃焼の方がR-L燃焼より低くなる。しかし、二次空気流量を増やした場合、R-L燃焼では二次燃料噴射直後に燃焼効率が落ち込んでいるのに対して、R-L燃焼では二次から大量の空気を導入しているにも関わらず燃焼効率の低下は見られないのである。これであることから、特にR-L燃焼の場合は空気流量の増加が作動範囲の拡大に効果的である。しかし、R-L燃焼の燃焼効率の落ち込みが回復した時点から比較しても、R-L燃焼と同じ当量比の範囲を使用することになり、NOx排出レベルが低いR-L燃焼の方が有利である。

図6. NOxの排出と燃焼効率 vs. 全体空気量比、φI、for different secondary airflow rates, Wa2, in lean-rich and rich-lean two-stage combustions.

図7. COとTHCの排出 vs. 全体空気量比、φI、for different secondary airflow rates, Wa2, in lean-rich and rich-lean two-stage combustions.
\(\varphi = 1.0 \) 付近では、二次空気流量を変化させても R-L 燃焼の NOx 排出レベルに違いが現れない。これは R-L 燃焼で生成する NOx は、二段目の希薄予混合気から生成される NOx より、一段目の過濃予混合気から生成される NOx の方が強く依存するためであると考えられる。一方 L-R 燃焼では、空気流量の増加により明らかに NOx 排出レベルに違いが現れた。このことから、L-R 燃焼で生成する NOx は、二段目の過濃予混合気に強く依存し、二次空気流量の滞留時間に大きく影響されると考えられる。

図 7 に全体当量比に対する CO と THC の排出を示す。R-L 燃焼では二次空気流量の影響は少ない。これは一段目からの未燃焼成分が支配的であるため、二次空気流量の影響が出にくいためと考えられる。一方 L-R 燃焼では、\(W_{\text{fuel}} = 12.0 \text{ g/s} \) の場合だけ二次燃料噴射時直後 CO 及び THC の濃度が高い。これは図 6 の燃焼効率の落ち込み（\(\varphi = 0.3 \) 付近）と対応しており二次空気流量の増加に伴い、二次燃焼領域の温度がさらに高まったためである。さらに、\(\varphi \) が 0.8 より大きい領域では二次空気流量が多い方が CO 排出レベルが高い。これは燃焼ガスの滞留時間が短くなったためと考えられる。

5. 結論

(1) 一般に NOx の低減に効果的とされる "rich-lean combustion" より、一段目を希薄予混合燃焼させ、その燃焼ガス中に二段目から予混合気を噴射する "lean-rich two-stage combustion" の方が NOx の排出低減が可能である。

(2) 燃焼ガス中に予混合気を噴射する二段燃焼では、一段目を過濃予混合燃焼させるより希薄予混合燃焼させた方が低い NOx 排出が得られ、また作動範囲も広くできる。

(3) 二次の空気流量を増加させることによって、"lean-rich two-stage combustion" と "rich-lean two-stage combustion" の二段燃焼とも NOx 排出レベルを低くでき、また作動範囲が広がる。

6. 参考文献

(3) 会田、西島、林、山田、川上：燃焼ガス中に噴射された気化燃料－空気燃料予混合気の燃焼と NOx 生成、第 30 回ガスタービン定期講演会 講演論文集：pp35-40 (2002)
軸方向に複数の火炎配置を有する

ガスタービン用低 NOx 燃焼器の燃焼安定性

＊前田福夫、岩井保憲、山田正彦 （株）東芝

1．まえがき

近年、ガスタービン燃焼器に希薄混合燃焼法が適用され、大幅な NOx 低減が実現されつつある。一方で希薄混合燃焼は、燃焼振動の増大や燃焼効率、燃焼安定性の低下を伴いやすい問題点がある。そのため燃焼器形状や火炎の複数化と共に、その燃焼条件を制御する燃焼法の最適化が計られている。NOx や CO の低減を計る中で、特に燃焼振動の低減や燃焼不安定性の防止に対する対策は、現状、理論のみでは予測・対応が不可能なため、主に実形状の燃焼器を用いた実運転条件における燃焼試験評価に依存せざるを得ず、多くの時間と資源を必要とする状況にある。そのため、これらに対応できる燃焼性能予測法や設計のための指針が求められている。

以上の背景より本研究では、前報（1）の排ガス特性と燃焼条件の関係に続き、軸方向に複数の火炎を配置したステージング燃焼を有する燃焼器について、吹消えを含む燃焼不安定特性と燃焼条件の関係に注目し、より一般的な設計指針に関する知見を得るため、高圧（約 1Mpa）条件下で行った燃焼試験の評価結果について述べる。

2. 使用する記号

\[
\begin{align*}
P_a & : \text{空気圧力（Mpa）} \\
T_e & : \text{燃料出口温度（℃）} \\
T_{dp} & : \text{反応器dpの燃焼ガス温度(℃)} \\
T_m & : \text{反応器mの燃焼ガス温度(℃)} \\
G_f, G_a & : \text{燃料、空気流量} \\
G_{fp}, G_{ap} & : \text{バイロット予混合燃料、空気流量} \\
G_{fm}, G_{am} & : \text{メイン予混合燃料、空気流量} \\
\phi_d, \phi_p, \phi_m & : \text{拡散、バイロット、メイン燃料当量比} \\
PR_p & : \text{予混合燃料割合（％）} \\
\alpha_{ddex} & : \text{拡散燃焼比（Gfd/Ga）} \\
\alpha_{pex} & : \text{バイロット予混合燃焼比率（Gfp/Ga）} \\
\alpha_{dp} & : \text{反応器dp燃焼比率} \\
\tau & : \text{滞留時間(ms)} \\
\tau_f & : \text{着火遅れ時間（ms）}
\end{align*}
\]

3. 供試燃料器と燃焼試験装置及び試み方法

3.1 供試燃料器と燃焼試験装置

図1に供試燃料器の構成及び空気、燃料の流れを示す。缶型の供試燃料器は上流より領域1、2で構成され、内径 360mm、L1=170mm、L2=760mm である。領域－1は拡散燃料ノズルと旋回器－1（スワール数 0.49）が設けられ、燃料 Gfd と空気 Gad がそれぞれ供給される。
更に旋回器-1の外側には旋回器-2（スワール数0.52）が設けられ、空気Gac又は予混合燃料Gfp+Gap（当量比Φp）が供給される。領域-2には空気Gam又は予混合燃料Gfm+Gam（当量比Φm）を噴出する空気孔が軸方向3列、周方向8等分で24個設けられている。また領域-1と領域-2の壁面の一部には、スロット冷却構造が設けられ、フィルム冷却が行われている。ここで領域-1の旋回器の開口面積および領域-2の空気孔の開口面積は一定で、3系統の燃料流量がそれぞれ供給される。また供試燃料の圧力損失は、燃料試験範囲においては約5％、領域-1、2における滲留時間は約1ms、20msである。

図2、3に高圧燃料試験に使用した試験装置系図、テストリグを示す。先ず図2に示すように燃料（天然ガス）は、燃料圧縮機で昇圧後、4系統のそれぞれ独立に制御可能燃料装置より所定の条件に調節され供給できる。燃料空気は、空気圧縮機で昇圧後、空気冷却器とパイパスバルブにより所定の空気温度、流量に調節され供給される。又燃料空気系には、大気温度の変化を模擬できるように蒸気を注入する系統が設けられている。これらの燃料、空気等はテストリグに導入され、必要に応じて圧力変換器や試験圧力が調整され、高温の燃料空気は冷却水により噴霧冷却後排出される。次に図3に示すテストリグ内では、燃料器のガスエアミン比で燃料圧力、燃料温度、燃料流量を調節している。内筒には熱電対や圧力センサーが取り付けられ、壁面温度や燃料器内の変動圧力を計測できる。又尾筒に装着される時火の観測を常時モニターできるファインシーブロープが取り付けられている。更に尾筒の下流に設けられた計測ダクトには拡散型熱電対及びガスサンプリングプローブが設置され、燃焼ガス温度分布やガス成分（O2、CO、CO2、NOx、THC）の計測がオンラインで可能である。

3.2 試験方法

低NOx燃焼器は、予混合希薄燃焼の採用や拡散燃焼割合を減少させる必要性より、通常の拡散燃焼の燃焼器に比較して、吹き出や不安定燃焼が発生し易い。供試燃焼器（図1）について、これらを観察するため実施した燃焼試験条件及び燃焼物性を表1に示す。試験パラメータは燃料器出口温度Te、拡散燃料Gfd、パイロット予混合燃料Gfp及び空気温度haである。空気温度は、大気温度40℃、100%相対湿度に相当する絶対湿度（0.048kg/kg）で変化させた。条件設定は、ほ
4. 試験結果及び考察

以下に供試燃焼器において計測された、「吹消え又は燃焼不安定」（以下、「吹消え等」と略記する）の発生限界に対する評価、考察について述べる。以下に本論文では、「吹消え」は燃焼器内の火炎が全て無く、または「不安定燃焼」は、拡散燃料 Gfd による火炎が存在（燃焼は継続）しているが、予混合火炎が変動し、低周波の圧力変動が観察される状態と定義する。

4.1 燃焼温度、大気湿度の影響

図4に、空気湿度一定（0.048kg/kg）の場合における、吹消え等の発生限界に対する燃焼器出口温度 Tex の影響を示す。全空量 Ga に対する拡散空比（α ddx）とバイロットと混合燃空比（α pex）の関係を示す。図中に安定燃焼域、発生限界における α ddx および α pex は、これらが共に増大する領域である。計測点の表示で Open（○印）は吹消え、Closed（●印）は不安定燃焼を示す。α ddx が概略 0.015kg/kg 未満の場合は α pex を低下させると吹消え、α ddx > 0.015kg/kg の場合は、α pex を低下させても吹消えず燃焼不安定になっている。また発生限界は、燃焼温度 Tex が低い程、α ddx および α pex が増大する領域にシフトしている。次に図5に、図4と同様に発生限界に対する空気中の湿度の影響を示す。湿度の増加に対して発生限界は、燃焼温度 Tex が低下する場合と同様に α ddx および α pex が増大する領域にシフトしている。

4.2 燃焼反応器モデル

ガスタービン燃焼器を対象とした、複数の火炎（拡散および予混合）の相互干渉下における吹消え特性等に関する研究は殆ど見られないが、旋回器によって保炎された単独火炎の吹消えや、これらに影響するスワール数や循環流量の影響等については多くの研究が行われている。この中で S.Hoffmann 等は、大気圧における燃焼試験結果より、単独の予混合及び拡散火炎に対する吹
消え限界が（1）式で表されることを示しているが、火炎を囲う閉空気（内筒）の有無や壁温によってその特性が大幅に異なることも示している。

\[
(Ua_{\text{exp}} - St_{\text{hp}}) / Dp = \exp(m \lambda p + B)
\]

ここで \(Ua_{\text{exp}} \) は吹き出し速度、\(St_{\text{hp}} \) はスワール数、\(Dp \) は旋回図径、\(m, \lambda, p, B \) は定数である。これは、燃焼特性を示すには燃焼器内部全体の流れや燃焼及び境界条件の影響全体を考慮する必要性を示していると考えられる。そのため本論分では、燃焼器全体の特性モデルを用いて吹消え等の特性評価を試みた。図6に反応器モデルの、回転中における領域1、2は、図1における領域1、2、3の燃料や空気の流れ、燃焼過程に対応している。領域1は5個の反応器（上流よりrc、dd、d、p、dpは循環域、拡散燃焼域、ddとrcの均一混合域、パイロット予混合燃焼域、pとdの均一混合域に対応）、領域2は2個の反応器（上流よりm、exはメイン予混合燃焼域、dpとmの均一混合域に対応）の構成とした。領域2の燃焼に影響する領域1の代表燃焼温度は、反応器dpの平均温度となる燃焼温度 \(T_{\text{dp}} \) を選定した。また図6に示す循環流量比の内、燃焼温度 \(T_{\text{dp}} \) に影響する\(\beta m \) については 0.15（一定値）を仮定した。また各反応器における燃焼温度 \(T_{\text{dp}} \) 等は、空気温度 \(h_a \) や空気温度 \(T_a \) 等によって変化するため、表2の各条件を対応した燃焼温度の計算値を使用した。

4.3 吹消え等に関連する燃焼温度

図6の反応器モデルにより、図4、5に示した吹消え等の発生限界に関する全ての計算点を、反応器 dp の燃焼温度 \(T_{\text{dp}} \) と、その燃焼比 \(\alpha_{\text{dp}} \) の関係として図7に示した。また図7の中には、各 \(T_{\text{dp}} \) の計算点に対応する反応器 m のメイン予混合燃焼温度 \(T_m \) 及び拡散燃料 Gfdに対する燃焼比 \(\alpha_{\text{ddex}} \) を、同様に \(\alpha_{\text{dp}} \) に対応させて併記した。ここでメイン予混合燃焼温度 \(T_m \) は、Gfd + Gfp + Gfm = 一定の試験条件（または Tex = 一定）のため \(T_{\text{dp}} \) の変化傾向や逆の傾向を示す。同様に拡散燃焼比 \(\alpha_{\text{ddex}} \) は、Gfd

+ Gfp に占める Gfp の割合が大きいため逆の傾向を示す。図7より以下の観点が推察される。（1）吹消え等の発生している燃焼温度 \(T_{\text{dp}} \) は大略 1050℃～1350℃の間にあるが、不安定燃焼（Unstable）の領域は、大略 \(T_{\text{dp}} < 1250 \)℃である。（2）\(\alpha_{\text{ddex}} \) の値が変化で吹消え状態となる範囲は、大略 \(\alpha_{\text{ddex}} < 0.0015 \) ～0.002）（kg/kg）である。逆にこれを超える場合は吹消えず、不安定燃焼となっている。（3）燃焼温度 \(T_{\text{dp}} > 1200 \)℃の場合は、\(\alpha_{\text{ddex}} \) の減少により拡散火炎が消失すれば吹消え状態となる（予混合火炎は燃焼継続できない）。逆に \(T_{\text{dp}} < 1200 \)℃の場合は、\(\alpha_{\text{ddex}} > 0.0015 \)
（kg/kg）であっても不安定燃焼となる。4. メイン予混合燃焼温度Tmは、Tdpの変化範囲において常にTm>Tdpであり、反応器mの領域-1への循環燃料流量（Gfm βm）はTdp等を上昇させ、燃焼安定性に寄与していると考えられる（特にTdpの低温側）。しかし吹消え等の発生は、拡散火炎の有無やTdpの温度レベルで決まり、Tm等反応器mの燃焼条件に依存しない。（5）燃焼温度Tex=1257℃（ha=0.048kg/kg）の場合は、Tm<1300℃であり、前記（4）で述べた循環燃料流量Gfm βmによる燃焼安定化への寄与も期待できず、他の場合と比較して燃焼安定性は悪いと考えられる。

以上より、Tdp<1200±50℃付近が燃焼不安定化への境界温度レベル、αdex<0.0015〜0.002（kg/kg）が吹消えに対する境界燃空比を推察される。

4. 4 排ガス特性（CO、THC）との関連

吹消え等の特性と関連の考えられる供試燃焼器のCO、THC計測値を図8、9に示す。図8には比較のためCOの計算値（1）も併記した。ここでCOの計算値は、横軸Tfを燃焼器出口温度とする完全予混合燃焼器のCO特性である。また図9は、図8における燃焼温度Tf=950℃、760℃一定条件（但しGfm=0）において、予混合燃料割合（PRp）を変化させた場合のCO、THC計測値である。先ず図10より、Tf>1200℃におけるCOレベルは、平衡値計測値）近傍まで値近できている（供試燃焼器の滞留時間約20ms）。これは、燃料ステージングにより燃料器内の温度を高温（>燃焼器出口温度）に設定できるためである。

THCは図示していないが、無視できるレベルであった。また運転条件Tf=950℃（Gfm=0）では予混合割合PRp=20%、燃焼温度Tdp（モデルの反応器dpの計算温度）は約1500℃、同様にTf=760℃（Gfm=0）の場合はPRp=0%、Tdpは約1200℃である。ここでTf=950℃の場合、図9に示すように予混合割合PRpの変化（但しTdp=一定）に対して、CO、THCは低レベルに維持できている。しかしTf=760℃の場合は、予混合割合PRpの増加（但しTdp=一定）に対してCO、THCは急増する傾向を示している。この理由は、先ずTf=950℃の場合は燃焼温度Tdp、滞留時間τfをそれぞれ1500℃、1msと仮定して、これらの変動や誤差を見込んでも、図8より、Tf=1500℃近傍のCO平衡値はτfやTfによってあまり影響を受けず低レベルであるが、他方、Tf=760℃の場合はTdp、τfをそれぞれ1200℃、1msと仮定すると、僅かなTF及びτfの変化により大幅な変動（増加）の可能性があるためと考えられる。すなわち領域-1において予混合燃焼割合ができ、Tdpが1200℃近傍の場合、燃焼温度や流速分布の時間、空間的分布の可能性を考慮すると、COやTHCの急増による燃焼効率の低下、またこれらに伴う燃焼安定化の可能性も推察される。

以上より、燃焼不安定化の境界温度レベルは、前記4.3より若干低めのTdp<1200℃と想定される。また燃焼不安定化への移行は、領域-1における予混合燃焼割合が多く（パイロット予混合
燃料）しかもその時の燃焼温度が \(T_{dp} < 1200 \) の場合と考えられる。しかもこの時には、下流のメイン混合発火温度の高低に拘らず安定化する。すなわちメイン予混合燃料は、可燃範囲以上の燃空比であっても常に上流よりの着火源が必要であり、領域－1 が不安定化すれば同様に不安定化すると考えられる。また吹消えは、燃焼不安定化の指標となる燃料温度 \(T_{dp} \) や燃焼器出口温度 \(T_{ex} \) の運転条件に影響されず、拡散燃空比が支配的と推察される。

4. 5 大気温度、燃焼温度の影響

燃焼温度は大気温度 \(ha \)、空気温度 \(Ta \) 等の燃焼条件によって変わる。図 7 に示した燃焼温度 \(T_{dp} \) が、同一燃空比 \(a dp \) に対して若干異なり、他数のトレンドを示すのはそのためである。表 2 の試験条件の中で、湿気温度による燃焼温度の相対する 4 条件について、燃空比に対する燃焼温度計算値 \(T_{f} \) の比較を図 10 に示した。

これらの条件による燃焼温度差は、図示の燃空比領域では約 60℃である。湿度差または約 60℃の燃焼温度差による燃焼不安定への影響は次のようなと考えられる。燃焼不安定の発生する燃焼温度（約 1200℃）を仮定し、燃空比を減少しつつ燃焼温度を低下した場合、最初に 1200℃まで低下するの 0.048/347℃の条件である。すなわち燃焼温度の低い組から不安定になる。

また燃焼温度が同じ場合は、図 10（および図 5）に示されるように燃焼特性となっている（0.048/385 と 0.015/347）。また、これらの燃焼温度差の影響は、水蒸気に限らず他の要因でも同様と考えられる。また別の観点として、大気温度 0.048（kg/kg）は容積比では約 7％に相当していること、メイン予混合燃料が領域－1 よりの高温燃料ガスと接触、混合により着火燃焼している可能性が推察されることから、着火遅れによる燃焼不安定化の可能性が考えられる。相対比較のため、7％（vol）の湿気一定条件下において、温度 1200℃～900℃の予混合燃料（燃料 CH4、当量比 1）の着火遅れ時間 \(\tau \) を計算した。同時に予混合燃料温度 1000℃一定条件下で湿気を 1％～10％まで変化した場の着火遅れ時間も計算した。これらを併記した結果を図 11 に示す。図より主に組成の変化による着火遅れの可能性が無いと考えられるが、湿度増加による燃焼温度低下によるメインまたはパイロット予混合発炎の燃焼不安定化への影響が推察される。計算は Chemkin の aurora により、GRI－mech 反応機構（15）を用いて行った。

5. まとめ

NOx 低減を主目的とした、軸方向に複数の火炎配置を有するガスタービン用燃焼器の燃焼安定性について、約 1Mpa の高圧燃焼試験結果及び反応器モデルを用いて評価検討した。その結果、広い運転条件における燃焼安定性の目安として吹消え及び燃焼安定化の発生は、拡散燃料燃空比 \(\alpha \) が大略 0.0015（～0.002）kg/kg 未満、燃焼不安定の発生が領域－1 を代表する燃焼温度 \(T_{dp} \)
が大略 1200℃未満と推察された。従って安定燃焼
範囲は図12の示す範囲となる。運転状況において
どちらが発生するかは主に Gfd および Gfp の減少
ルートにより、Gfm の影響は少ないと推察される。
また、大気温度の影響等が燃焼不安定発生に影響
しているが、これは燃料または空気の組成、温度
等による燃焼温度の違いによると考えられる。
今後、領域－1 の燃焼温度に影響する循環流量比
βm の影響やパイロット予混合燃料の内筒コーナー
部における保炎の有無等が検討課題と考えられる。

図12 安定燃焼の範囲

参考文献
（1）前田福夫、岩井保憲、第30回ガスタービン定期公開講演論文集、(2002-10)，pp. 59-65
（2）S.Hoffmann, B.Lentz, H.Eickhoff, “Results of Experiments and Models for Predicting
Stability Limits of Turbulent Swirling Flames” Trans. of ASME, Apr.1998, vol.120,
pp. 311-316
（3）G.J.Sturgess, D.Souse, "Lean Blowout Research in Generic Gas Turbine Combustor
with High Optical Access", ASME paper 93-GT-332
of the Primary Region of a Model Gas Turbine Combustor”, 91-YOKOHAMA-IGTC-48
（5）http://www.berkeley-educ/gri-mech/
SMGT 用 A 重油焚き低 NOx 燃焼器の開発（第 2 報）

*堂浦 康司(川崎重工業)
木村 武雄(川崎重工業)

1. はじめに
SMGT(Super Marine Gas Turbine)は、国家プロジェクト「環境低負荷型船用推進プラントの試験研究」(1997年度〜2002年度)ののもと、次世代船用推進力源として開発された 2,500kW 級の A 重油焚き船用ガスタービンである。SMGT の重要な開発目標のひとつとして「NOx 排出量が 1g / kWh 以下」が設定されており、当社は目標を達成できる A 重油焚き低 NOx 燃焼器の開発を行ってきた。前報では、燃焼器単体の燃焼試験においては目標達成の見込みを得たことを報告した。
2001年度後半から2002年度にかけてはエンジンによる実証試験が行われたが、低 NOx 運転時に NOx 排出量 1g / kWh 以下を達成することができた。今回は、エンジン実証試験における低 NOx 運転について述べる。

2. A 重油焚き低 NOx 燃焼器
SMGT は再生サイクル式のガスタービンであり、圧縮機を出した空気は再生熱交換器で排ガスからの熱を与えられた後、燃焼器に供給される(図 1 参照、熱交換器は省略)。燃焼器方式としてはマルチキャップ型を採用しており、4つの燃焼器がエンジンに搭載される。図 2 はエンジンに搭載された燃焼器の側面を、(a)排気側から、(b)側面から見たものである。燃料は、燃料制御装置において 4 つの燃料系統(後述)にそれぞれ分配された後、燃料マイナールームを通じて各燃焼器へ供給される。燃焼器とタービンの間は尾筒(図 3)で結ばれ、尾筒内で燃焼ガスがタービンへ流れる。尾筒も燃焼器同様、4 つ搭載される。

図 4 に低 NOx 燃焼器概略を示す。本燃焼器は、低 NOx 化のために予蒸発・希薄予混合燃焼方式と追焚き燃焼方式を採用している。低 NOx 運転時は、8 個のメインノズルから喷射されたメイン燃料(M)とスワーラから流入した空気を予蒸発・予混合した後希薄予混合燃焼を行い、NOx 生成を抑制する。さらに、希薄予混合燃焼後の燃焼ガスに 4 本の追焚きノズルから追焚き燃料(S)を噴射し、追焚き燃焼を行う。'追焚き燃焼'は、NOx を増加させることなく負荷を変化させることができる手法である。
燃料系統は、M, S の他にパイロットノズルから喷射される P1, P2 があり、計 4 つである。P1, P2 は着火、起動、低負荷運転時等に使用する。負荷に対する各系統の燃料スケジュールの概略を図 5
に示す。希薄予混合燃焼は低い負荷では燃焼安定性が悪いので、低 NOx 運転を行うことができない。よって低 NOx 運転が可能となる負荷までは、P1 と P2 による拡散燃焼による運転を行う。低 NOx 運転可能な負荷に到達すると P1、P2 と M を交換することで、低 NOx 運転に切り替える。P1 は保炎のため少量残される。低 NOx 運転範囲では負荷の変化に対しては、主に S を変化させることで対応する。

図 2 搭載された燃焼器

図 3 尾筒

図 4 低 NOx 燃焼器概略

図 5 燃料スケジュール概略

3. エンジン実証試験結果

エンジン実証試験における低 NOx 運転時の各燃料系統への配分は、エンジン運転中に NOx、CO 等の排ガス成分を測定しながら微調整を行った。低 NOx 運転時の NOx 排出量を図 6-(a)に g / kWh
で示す。負荷率70%から100%の間において、NOx目標値である1g/kWh以下で運転できることを確認できた。

図6-(b)は、低NOx運転時のNOx排出量をppm(O2=0%)で表したものである。要因研究時にNOx目標値の目安とした200ppm(O2=0%)を、負荷率70%から100%において下回っている。

実証試験中はパイナ壁温の監視を行っていたが、パイナ耐久性に大きな問題となるような温度になることはなかった。図7は実証試験後のパイナ内面であるが、損傷等は見られなかった。また、低NOx運転時には、予混合流路内に逆火が生じないかを熟電対で監視していたが、逆火が発生することはなかった。
4. まとめ

A重油焚き低NOx燃焼器を搭載した2,500kW級次世代船用ガスタービンSMGTの実証試験において、負荷率70%から100%においてNOx排出量1g/kWh以下で運転できることが確認できた。

最後に、本研究開発は、国土交通省、運輸施設整備事業団、日本財団のご支援・ご指導を得て実施したものである。ここに関係各位に深く感謝いたします。

参考文献

[1] 杉本他、"スーパーマリンガスタービンの要素研究について"、
ガスタービン学会誌 Vol.29, No.2, pp.22-27

[2]堂浦、木村、"SMGT 用A重油焚き低NOx燃焼器の開発"、
第16回ガスタービン秋季講演会講演論文集(2001.10), pp.195-200
ガスタービン燃焼器の小型化における問題点の把握

*高松正周（慶大院）、室田慎介（慶大院）
川口修（慶大理工）

1. 緒言
近年ガスタービンは大型化・高圧化を進める一方、分散型発電への利用を目的とした小型化も進んでおり、数10kW以下のガスタービンが使用されるようになってきている。また、携帯用電子機器や超小型無人偵察機への利用を想定した超小型ガスタービン（UMGT）も研究されている。ガスタービンの小型化に伴い、燃焼器も小型化に終わらざるを得ないが、現状では小型化による燃焼器としての特性（燃焼安定性、排気特性など）への影響について定量的な検証がされていない。

UMGTは開発に向けた研究は進められているが、各要素の小型化に伴う技術的問題を克服できていない。燃焼器についても、安定に燃焼する作動条件の範囲が非常に狭いことが報告されている。燃焼器の小型化に伴っては①燃焼距離の相対的増加、②熱損失率の増加による火炎安定性の低下、③Re数低下による高負荷燃焼現象の困難化、などその性能を阻害する要素が生じることが考えられる。したがって、小型化に伴う影響要因を定量的に評価し、小型燃焼器が高効率で安定に作動する範囲を広げることが必要であると思われる。

そこで、本研究では小型の環状旋回流式の燃焼器モデル（内径50mm、高さ15〜35mm）による実験を行い、燃焼器内Re数低下、壁面からの熱損失率増加など、燃焼器の小型化によって生じるとと思われる燃焼器特性への影響要因を把握し、定量的に検証することを目的としている。本報では予混合燃焼方式を用いて作動条件による火炎性、排気特性への影響を調べた実験結果の一部を報告する。

2. 実験装置および実験方法
2.1 実験装置
実験に用いた燃焼器モデルを図1に示す。このモデルは環状旋回流式燃焼器で、空気あるいは予混合気があるが燃焼器壁面に設けられた噴射孔から接線方向に供給される構造である。燃焼室内径は50mmであり、燃焼器中央にはコンプレッサーとタービンをぶら下がり、存在することを想定した円柱（径25mm）が設けられている。燃焼器下流出口にはエンドプレートが設けられ、中央の円柱の長さを変えることで燃焼室の容積を変えられることが出来る。また本モデルの特徴として、予混合燃焼と拡散燃焼の両方式への対応が可能であり、燃焼筒を交換し、断熱壁もしくは水冷壁とすることで容易に壁面からの熱損失量をコントロールすることができる。

図1 燃焼器モデル（水冷燃焼筒装着時）
予混合燃焼時は、気体燃料と空気は燃焼器の上流で十分に混合された予混合気が燃焼室の接線方向噴射孔より供給されるが、拡散燃焼時は、気体燃料は空気噴射孔内または燃焼器底面に設けられた直径2mmの噴射孔より供給される。

2. 実験方法
実験パラメータとしては空気流量\(m_a[/g/s]\)、当量比\(\phi\)、燃焼室長さ \(L[/mm]\)、熱損失量を設定した。空気流量範囲は、希薄条件で燃焼負荷率3000MW/(m³・MPa)程度になる流量を目安に設定した。実験対象とした当量比範囲は、後述する安定限界測定の結果をもとに、0.5から0.8までとした。燃焼器容積の変化（負荷率の変化）による特性への影響を調べるために、燃焼室長さは15mmから35mmまでとした。
燃焼筒は交換できるようになっており、火炎性状を外部から観察するための石英ガラス燃焼筒、熱損失を抑えるための断熱セメント燃焼筒、熱損失を変化させるための水冷ジャケット付燃焼筒を使用した。
水冷ジャケット燃焼筒では、冷却水の流量と出入口の温度変化から熱損失量を求めた。本報の実験では、燃料として純メタンを用い、供給空気は常温（約293K）、燃焼器下流を大気開放状態としている。
設定された各作動条件において燃料安定性、排気特性を調べるために、燃焼筒出口において温度、ガス成分の測定を行った。温度測定にはR型熱電対（素線径50μm、ビード径約80μm）を用いた。
ガス成分は、水冷プローブで吸引したガスを前処理器に通した後、NOx（常圧化学発光法）、CO、CO2（非分散型赤外線吸収法）、UHC（水素炎イオン化検出法）、O2（磁気力式）測定計によりそれぞれの濃度を求めた。燃焼筒出口では、断面の代表濃度として環状流路の半径方向の面積を2等分する位置1ヶ所において測定を行った。

3. 実験結果および考察
3.1 基本特性
3.1.1 火炎安定限界、火炎写真
図2に火炎写真の例を当量比の異なる場合、流量の異なる場合を比較して示す。写真のように、火炎は燃焼室壁面付近に沿うように形成されるが、空気流量を一定として当量比を下げていくと、火炎は燃焼室壁面より離れていき、かつ下流まで火炎が広がる状態となる。ある当量比では火炎は燃焼器内に収まる（印の領域）が、それより当量比が低下すると図2右上のように火炎は燃焼室外に出てエンドプレートの下流まで伸びる。そして安定限界近傍条件では図2左上のように火炎は燃焼室周辺には形成されず、エンドプレート内側に局部的に形成されるが、やがてエンドプレートが冷却され消火する。
図3に石英ガラス燃焼筒と断熱セメント燃焼筒を用いた際の火炎安定限界を示す。安定限界は空気流量の増加に伴い、高当量比へ移行していく。これは、流量の増加に伴って外壁面近傍の速度勾配の増
加で乱れ強さが増加し、安定に燃焼場を形成させるための限界当量比が増加するものと考えられる。しかしながら、ガラス燃焼筒から断熱セメント燃焼筒への変更、燃焼室容積の変化は安定限界にほとんど影響を及ぼさない。壁面からの熱損失は、壁面近傍の反応速度に影響を与えると考えられるが、強いせん断流れにより壁面近傍に火炎が存在できなくなることから、石英ガラス燃焼筒、断熱セメント燃焼筒のいずれにおいても安定限界に影響を及ぼすほど火炎から壁面への熱損失の差は現れなかったものと思われる。

図3 火炎安定領域

3.1.2 排気特性

燃焼器長さL=35mm、石英ガラス燃焼筒を使用した場合の排気特性を図4、5に示した。未燃焼化水素（UHC）、COの濃度は、いずれも16%O₂換算の数値で示す。UHC、COの濃度は流量の増加とともに増加し、その流量においても当量比の減少に伴って低下した後に対流する傾向を示した。また、これらが増加に伴う当量比の値は流量によって異なり、流量の増加とともに高い当量比側へと移行している。また増加に伴う当量比は、同じ流量ではUHCよりもCOの方が大きい結果となった。

未燃分の量は、燃焼反応速度と、予混合気流中に含まれる燃料の量、滞留時間との関係で決定されると考えられる。当量比の低下に伴って燃焼反応速度が低下し、反応領域は燃焼室の内側に移動して内部の循環領域内において反応するので、燃焼温度低下に伴う燃焼ガス体積の減少による滞留時間の増加に影響して未燃分を低下させたと考えられる。そこでこれらの変化の影響、石英ガラス燃焼筒による観察によくも確認されている。さらに当量比を下げると、ある当量比を境に燃焼反応温度の一層の低下と反応速度の低下の影響で未燃分が増加に伴う傾向を示す。その際、UHCは燃焼反応が開始していれば減少するのに対し、中間生成物であるCOは燃焼反応が終了していなかったり減少しないため、COが低濃度を示す当量比がより高当量比側に現れたと考えられる。

本実験のような旋回流式の燃焼器では、燃焼室壁面近傍の強せん断流領域における部分吹き消えが大きく影響しているものと考えられる。未燃成分が最少となる当量比を境に、それより高当量比側では、燃焼はしているものの、部分吹き消えによって不完全燃焼となっており、それより低当量比側では燃焼
反応が行われず、予混合気の一部が未反応のまま燃焼室を通ぎていると思われる。特に高当量比における未燃分の増加現象が、この燃焼器モデルの特徴といえる。

図5には設定流量をパラメータとした当量比に対する燃焼効率の変化を示す。燃焼効率は排気中に含まれるUHC、COの排出値を供給した燃料の発熱量から差し引いた、その供給料に対する割合で計算されたものである。流量の少ない条件に比較して流量が多い条件では当量比が高くなると燃焼効率が大きく低下する傾向がある。これは流量の少ない条件では壁面近傍のせん断流領域の一部を沸かせがほとんど起こらず、また滞留時間が反応時間に比較して大きいため、実験の当量比範囲では未燃分が排出されず燃焼効率を大幅に悪化させないのに対し、流量が大きくなるとせん断流領域の部分沸かせが未燃分を増加させ燃焼効率を低下させる、と考えられる。

いずれにせよ空気流量において燃焼効率を最大にするための最適当量比が存在し、実機に搭載する場合は目標の荷物に対してそのことを考慮する必要があると考えられる。

3.2 熱損失に関する検討

燃焼器の小型化に伴って問題となるものの1つに、燃焼室壁面からの熱損失量の増加が挙げられる。これは、燃焼器の小型化に伴い、燃焼室断面に対する壁面断面の割合が増加するために起こると考えられ、これにより燃焼室内の遠方温度の低下、それに伴う燃焼反応速度の低下、ひいては燃焼効率の低下を招くものと考えられる。本報告では熱損失が大きくなる作動条件の検討、および熱損失が排気特性に与える影響について述べる。

本研究における熱損失を評価する指標として、熱損失

\[\eta_h = 1 - \frac{g_w \cdot c_{pm} \cdot (T_b - T_0)}{H_f \cdot \eta_h} \]

Hf: メタンの発熱量[kJ/kg]
gw: 燃焼ガス重量[kg/kg-fuel]
cpm: 完全燃焼ガス成分の T0 ～ Tb 間の平均定圧熱值[kJ/(kg·K)]
Tb: 排気温度の測定値[K]
T0: 入口空気温度[K]

图6に駆動ガス燃焼筒を使用した場合の各作動条件における熱損失の変化を示した。基本的には排気特性と同じく、当量比の増大に伴い損失率は減少していく。ma=0.60g/sにおいては、図5において燃焼効率が低下している領域においても損失は当量比の減少に対して減少している。また熱損失率は数％～10％のオーダーで変化しているのに対し、燃焼効率はその1/10程度の変化している。このことから、当量比の増減に伴う壁面からの熱損失の増減が燃焼効率に与える影響は、あまり大きなもの
ではないと考えられる。また安定燃焼範囲においては流量が大きいほど熱損失率は小さい值となっている。一方L=35mmとL=15mmの比較では、同じ流量においてほとんど変化は見られなかった。つまり燃焼器の容積に関わらず、同じ当量比、同じ負荷であれば損失率は変わる結果となった。

図7に、燃焼室容積が異なるが燃料負荷率が近い2つの条件を例に取り、熱損失率と燃焼効率を示した。このグラフより、同程度の燃料負荷率においては、L=35mmからL=15mmへの小型化に伴い30％程度熱損失率が増加する結果となった。ただ、L=15mmにおいては40％を超える熱損失率であるにも関わらず、当量比0.6以上では燃焼効率は99.9％以上となっており、壁面からの熱損失が燃焼効率にほとんど影響を及ぼしていないことが分かる。

流量の増加に伴い熱損失率が減少する要因としては、燃料ガスの燃焼器内滞留時間が減少し、壁面からの対流や輻射による伝熱量が減少するためと考えられる。また、流量の増加、当量比の減少に伴い火炎面が燃焼室壁面近傍の強せん断流領域から離れることによっても壁面からの伝熱が減少するものと思われる。

また、図7の結果より、燃焼器の小型化に伴い、壁面からの熱損失割合が増加し、その結果燃焼ガス温度を下げると考えられるものの、十分に当量比が高い条件では、それは燃焼が完了した後の熱損失であるために燃焼効率にはほとんど影響をおよぼさないものと考えられる。このことを確認するためには燃焼器のガス濃度、温度を測定する必要があり、また燃焼室のどの部分での外部熱損失が大きいのかを調べる必要がある。今後この点について詳細な測定を行い、明らかにしていきたい。

熱損失率が排気特性に与える影響をより明確に調べるため、幾つかの代表的な流量、当量比条件において、断熱セメント壁燃焼室に代えて真鍮製水冷壁燃焼室を用いた。そして冷却水量を変化させることで、強制的に熱損失率を変化させ、それが排気特性に与える影響を見た。その結果を図8に示す。

$m_a=1.99g/s, \phi=0.70$では、図4、5からも分かるように燃焼効率の高い安定した燃焼状態であるが、この条件において熱損失率を10％程度増加させても、燃焼効率はほとんど変化していないことが分かる。一方、その条件から当量比を下げた条件、および空気流量、すなわち負荷を上げた条件では、熱損失率
の増加が燃焼効率により大きな影響を与えている。前者は図4, 5から分かるように燃焼効率を最大にする当量比を越えた当量比条件であり、後者は燃焼負荷率が高く、燃焼効率の悪い条件である。

以上のことから、10％程度の熱損失率増加は、燃焼効率を最大にするような当量比、流量条件においては排気特性に悪影響を及ぼさないが、もともと不安定な条件や、燃焼効率の低い条件においては燃焼効率を数％程度下げるほどの影響を及ぼすことが明らかになった。

4. 結言

燃料器の小型化に伴い生じるとと思われる問題点を把握し、それらが燃焼特性に及ぼす影響を検証することを目的として、小型の環状旋回流式の燃料器モデル（内径50mm、高さ15〜35mm）による実験を行い、予混合燃焼方式で作動条件と火炎性状、排気特性を調べた。実験の結果、現在まで明らかにされた内容を要約すると下記のとおりである。

A) 燃焼効率を最大にする当量比が存在し、それよりも高い当量比においては通常の燃料器に比較して未燃成分の増加が顕著である。
B) 燃焼器長さ（容器）を変化させても火炎安定限界に変化は見られず、安定限界は空気流量と当量比の関係で決まる。
C) 安定燃焼条件においては、当量比の増加に伴い熱損失率も増加する。また同じ当量比では空気流量の増大に伴い熱損失率が減少する。
D) 燃焼効率は、もとより十分に安定で燃焼効率の良い作動条件では、燃焼効率にほとんど影響を及ぼさないが、燃焼効率の低い条件においては熱損失は燃焼効率に影響を及ぼす。

今後は、熱損失について広範囲の作動条件において燃料器内部の詳細測定を行い、燃料器小型化に伴い燃焼特性に生じる影響を定量評価するとともに、熱損失以外にも小型化に伴う問題点を把握していきたいと考えている。

参考文献
(2) 湯浅三郎他,「超小型燃焼器の開発」, 日本ガスタービン学会誌, Vol.30, No.4, 19-24, 2002
超小型ガスタービン用プロパン燃焼器の
燃焼特性に及ぼす燃料器入口形状の影響

＊上原 麻美子（都立科技大院） 湯浅 三郎（都立科技大）

1. はじめに

著者らは、これまでに「超小型ガスタービンを用いた家庭分散型発電の実現」を目標に、燃料に水素を用いたキャリア型1114及びアニラージェータ型燃焼器の開発研究を行ってきた。これまでの実験データ及び実験装置をもとに、燃料にプロパンを用いた場合での超小型燃焼器の実現可能性についての検討に着手した。すでにインフラの整っているプロパンを燃料に用いることで、「超小型ガスタービンを用いた家庭分散型発電」の即実現化を目的としている。

プロパン燃料に関しては、すでに燃焼器内筒直径44mmのキャリア型水素燃焼器を流用した予備実験を行っており、それによると、入口空気ノズルでのスロート部空気流速を小さくし、また燃料噴射孔での燃焼流速を大きくすると、プロパン火炎の安定性が高くなる結果が得られた。本研究では、このキャリア型と同程度の空気流量のまま、燃焼器形状をアニラージェータ型（12個の火炎を配置）にした場合での、空気及び燃料の噴出方法が火炎安定性に及ぼす影響を調べるため、以下のことを行った。まず、試験燃焼器にはアニラージェータ型水素燃焼器の試験用として製作し、燃焼実験に用いてきた要素試験用セクタ燃焼器（以後、「試験燃焼器」と呼ぶ）を流用した。本実験燃焼器は、3つの火炎を直線的に形成させるもので、火炎1つ当たりの燃焼器（14×21×30mm）は、キャリア型の燃焼器容積（φ44mm×77mm）の約1/15倍である。このサイズの燃焼器でプロパン火炎を扱うのは初めてであるため、まして共存の水素用燃焼器を流用して予備データの取得を試みた。

本報では、入口気流ノズルのスロート径およびインジェクタ先端面の燃料噴射孔総面積を変えて、火炎安定性、火炎形状及び再循環領域形状の比較を行ったので報告する。

2. 実験装置及び実験方法

2-1 試験燃焼器

図1に本実験で用いた試験燃焼器の概要図を示す。空気は4ヶ所から試験燃焼器内に入り、各スワラーを通過後、3ヶ所の入口空気ノズルから燃焼室内に噴出される。本実験に用いた入口空気ノズルは、図2-(a)に示すようなスロート径がφ6mm（断面積：28.26mm2）のものと、噴出流速が約1.2倍となるφ9mm（63.56mm2）のものである。なお、本実験燃焼器では、2次空気孔を設けず、すべての空気が入口部より流入する構造となっている。燃料は外径3mmの3本のインジェクタから燃焼室内に噴射される。インジェクタの基本構造は、図2-(b)に示すように、先端面に斜め45°の噴射角を持たせた孔を4つ配置したものである。燃料噴射孔径はφ0.4mm（断面積：0.09mm2）のものと、噴射率総面積が約2倍となるφ0.6mm（1.13mm2）のものを用いた。インジェクタは、その先端面と入口空気ノズルのスロート面とが一致する位置に装着した。スワラーは、水素燃焼器で用いてきたもの10とほぼ同程度の旋回強度のものを使用した。着火には外部からの水素パイロット火炎を用い、実験はすべて燃焼室出口を大気開放の状態で行った。

2-2 炎色反応による再循環領域形状の測定方法

燃焼室内に形成される再循環領域の形状を確認するために、直径φ1.5mmのディグジェット（耐熱性保
3. 実験結果と考察
実験に先立ち、水素燃焼実験で用いた形状のままのセクタ燃焼器内に、プロパン火炎を形成させたところ、図4中の「without Spacer」に示すように左右の火炎と中央の火炎とでその形状が著しく異なり、また3つの火炎の吹飛び点も異なっていた。プロパン/空気混合ガスの層流燃焼速度が、水素のそれに対して約1/10倍であることを踏まえれば、燃焼室内で燃焼が素早く進行する水素に比べ、プロパンでは燃焼反応に要する時間が長くなる分、火炎が大きくならざるを得ない。セクタ燃焼器の構造上、左右の火炎と中央の火炎付近の燃焼容積が異なっていたため、主流の空気の流れ場つまり混合の具合に差が生じ、3つの火炎形状及び火炎安定性に違いが生じたと考えられる。そこで、3つの火炎の燃焼場を均一と仮定するため、3つの火炎の形成される各燃焼容積が等しくなるように、燃焼室内にスペーサーを設置（図1参照）したところ、3つの火炎はほぼ同様の形状となり、吹飛び点も3つの火炎でほぼ一致するようになった。よって、以下の燃焼実験はすべて、スペーサーを装着した状態で行った。

3-1 火炎安定限界
図3に、本実験で得られたプロパン火炎の安定限界を示す。このグラフは、横軸に空気流量mₐ、縦軸に当量比φをとり、入口ノズルのスロート径（φ6mm、φ9mm）及びインジェクタの燃料噴射孔径

図1. 試験燃焼器概略図
図2. 入口空気ノズル(a)及び燃料インジェクタ(b)概略図
（φ0.4mm, φ0.6mm）をパラメータとした打火吹飛び限界点をプロットしたものである。本実験の範囲内では3つの火炎はほぼ同時に吹き飛んだので、その点を火炎吹飛び限界点とした。

火炎安定限界は空気流量に対して単調増加となっている。安定限界線より高当量比で火炎は安定に形成されることを示している。これは、燃焼室内での再循環領域の発達により、燃焼反応によって生じた高温ガスや活性化学種がインジェクタ付近に逆流するために、火炎基部が安定化されやすくなるためである。しかし、低温用燃焼器をそのまま流用した場合、プロパン燃料では、設計点（空気流量m_a=4[g/s], 当量比φ=0.3）で、火炎を形成させることができず、本実験燃焼器でのプロパンの火炎安定性は非常に悪いことがわかった。

スロート径、すなわち空気噴出流速で比較すると、流速の小さいφ9ノズルの方が安定性に優れており、この傾向は燃料噴射孔径を変えても同様である。一方、このφ9ノズル装着時で、燃料の噴射孔縦断面積の違いによる影響を比較すると、燃料噴射速度の大きいφ0.4インジェクタの方が、火炎安定性に優れていることがわかった。

3-2 火炎形状

図4に、セクタ燃焼器内に形成されたプロパン火炎を示す。φ6ノズルの方がφ9ノズルの場合より、中央の火炎が小さくなっている。これは、空気流量が大いために空気と燃料が混合しやすく、燃焼が速やかに完了しているためであると考えられる。また、これは燃料流速でも同様の傾向で、燃料流速の大きいφ0.4インジェクタの方がφ0.6インジェクタよりも火炎が小さくなっている。これらを踏まえて火炎長を比較すると、空気及び燃料の流速が共に大きい方の組み合わせ、つまりφ6/φ0.4（図4-c）のとき、火炎長は4つの条件の中で最も短くなっている。逆に、空気及び燃料の流速が遅い方の組み合わせであるφ9/φ0.6（図4-b）のとき、火炎長は最も長くなっている。また、φ9/φ0.4（図4-a）よりφ6/φ0.6（図4-d）の方が、火炎長が短くなっていることから、空気と燃料の混合による火炎長の短縮への寄与が大きいのは、本実験条件では燃料噴射速度よりも空気流速であると考えられる。

<table>
<thead>
<tr>
<th>Combustion Chamber</th>
<th>without Spacer</th>
<th>with Spacer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing (mm)</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Nozzle Type</td>
<td>φ9Noz. (U=20m/s)</td>
<td>φ6Noz. (52m/s)</td>
</tr>
<tr>
<td>Injector Type</td>
<td>φ0.4Inj. (U'=72m/s)</td>
<td>φ0.6Inj. (32m/s)</td>
</tr>
</tbody>
</table>

図4. 火炎形状 (m_a=4[g/s], φ=0.8)
火炎形状の特徴として、どの条件においても燃焼部上流から下流に向かう途中で、一度横幅が膨らみ、その後V字型になっている。この膨らみ部分は、45°の角度を持たせて噴射した燃料が、燃焼器壁をししくは接触する火炎面に衝突している箇所に対応している。空気流速の大きいφ6ノズルの方が、φ9ノズルの場合より、膨らみ部分が下流側に移っている様子が確認でき、このことからも、主流方向の空気流速が火炎形状を決定している支配的な要因であることを示唆していると言える。

また、図5に示す再循環領域の形成位置と、火炎のV字部分の位置を比較してみると、再循環領域は燃焼室内に限られていることから、このV字型は周囲空気の巻き込みによるものではないことが明らかである。V字部分は、噴出された燃料が燃焼室高さを超えて突き出したものであり、このことは再循環領域内の空気の局所運動量より燃料噴流の運動量が勝っていることを示唆している。

インジェクタ付近の流れ場に及ぼす再循環領域の影響は、一般的に火炎安定性を大きく左右すると言われている。目視による確認では、φ9ノズル装着時には、インジェクタの燃料噴射面より上流のインジェクタ側面にまで火炎の付着が及んでいた。一方φ6ノズル装着時には、燃料噴射面より上流での火炎の付着は見られなかった。つまりφ6ノズル装着時の保炎位置は、ノズルスロート面より下流であった。

火炎長から燃焼熱発生を計算してみたところ、当量比φ = 0.8のときの火炎長が、本実験燃焼器高さの2倍程度まで突き出ていることから、このときの燃料流量(=0.2g/s)と本実験燃焼器容積×2の容積(=53cm³)を用いて燃焼熱発生を計算すると、設計空気流速4g/sで当量比φ = 0.8のとき、本実験燃焼器は燃焼熱発生1750[MW/MPa/m²]を達成していることがわかる。本実験燃焼器内に、当量比φ = 0.3の火炎が納まった場合の燃焼熱発生は1400[MW/MPa/m²]程度であるから、低当量比で火炎を安定に形成させることができれば、本実験燃焼器サイズでもプロパン燃焼器は充分実現可能であると言える。

3-3 火炎安定性に及ぼす燃焼器入口形状の影響

火炎安定限界の結果によると、空気噴出流速が大きいと火炎を安定化しきれない。この傾向は燃料噴射孔径を変えても同様である。これは、燃料と空気とが部分的に予混合して形成される予混合気の燃焼速度と、これにあうべき流場が高速となって火炎を保持しにくくなるためであると考えられる。

一方、燃料噴射孔径を小さくインジェクタを用いた方が、火炎安定性に優れている理由については以下のように考えられる。一般に、空気中に燃料を噴出した噴流拡散火炎では、燃料流速を大きくすることで、空気と燃料の混合は促進されが火炎は吹飛びやすくなる。本実験の結果を噴出流速で比較すると、これは逆の傾向である。そこで、インジェクタ先端面の形状の違いに着目し、インジェクタ先端面全体の面積から噴射孔総断面積を引いた値を「リム面積：S」と定義し、火炎付着に寄与するリ
5. まとめ

* 本セクタ燃焼器内に形成されるプロパン火炎は、個々の火炎が同サイズで形状も同様の場合、火炎吹び点は一致する。
* 入口空気ノズルから燃焼室内に噴出するスロート部空気流速 U_a は、小さい方が火炎を安定化しやすい。また、見かけ上はインジェクタ先端面からの燃料噴射速度 U_f が大きい方が火炎を安定化しやすいが、これはインジェクタ先端面でのリム厚さが大きいことによるものである。
* 火炎長さの短縮には、燃焼室内に噴出する空気流速 U_a 及び燃料流速 U_f ともに大きい方が効果的である。
* 水素用燃焼器の形状を変えずに、そのままプロパン燃焼器に転用することは、火炎安定性及び火炎長さの点で実用的ではない。

謝辞

本研究は、一部平成14年度 NEDO 国際共同研究提案公募事業（発電技術）「超小型ガスタービン実用化先端研究」の補助を受けて行った。また本研究を進めるにあたり、本学学ぶ4年の藤本隆行君には実験を中心に協力をいただいた。本学大学院博士課程の皆川和大氏、および14年度本学客員教授の田丸卓氏には多くの助言を頂いた。ここに記して謝意を表します。
参考文献

(2) 湯浅三郎, 西田幸一, 織田政, 皆川和大, 「超小型水素ガスタービン用燃料廃棄物燃焼器の燃焼安定性と燃焼特性」, 日本機械学会論文集 (B編), 61 巻 588 号, 3075-3081, 1995.

(5) 上原麻美子, 湯浅三郎, 「ニューラー型超小型ガスタービン用燃料試験燃焼器の開発・検討」, 創立 30 周年記念ガスタービン講演会講演論文集, 121-126, 2002.

(6) 上原麻美子, 湯浅三郎, 「超小型ガスタービン用セクタ燃焼器の燃焼特性に及ぼすスララー形状の影響」, 第 30 回ガスタービン定期講演会講演論文集, 97-102, 2002.

(7) 上原麻美子, 湯浅三郎, 「超小型ガスタービン用ニューラー型試験燃焼器の開発」, 第 8 回 動力・エネルギー技術シンポジウム講演論文集, 531-536, 2002.

(8) 須藤隆行, 「3kW GT 用ニューラー型燃焼器の開発研究～燃焼特性に及ぼす空気・燃料入口形状の影響～」, 東京都立科学技術大学平成 14 年度卒業論文, 2002.
Ultra Micro Gas Turbine要素間の熱移動がガスタービン性能に及ぼす影響

押尾佳菜（東京都立科学技術大学院）
湯浅三郎（東京都立科学技術大学）

1. はじめに
近年、半導体技術の応用であるMEMS技術の一環として、MEMS製の超小型ガスタービン（Ultra Micro Gas Turbine; UMG）が米国MITのグループによって提案された1)。ガスタービンを小型化することによって、高出力比や、材料強度の相対的増加などの利点が考えられ、超小型航空機の推進機としてはもちろんのこと、携帯用超小型発電機としての応用も期待されている。UMGなどのマイクロマシンは体積に対する表面積の増加（いわゆるcube-square law）によって、熱が伝わりやすいという特徴をもつ。これは、冷却が必ずしも電子部品などにとっては有利な特徴となるものの、ガスタービンなどの熱機関にとっては逆に不利な条件となる。特にUMGは燃焼室とコンプレッサ、タービンなどの要素が隣接しており、燃焼器壁面回転面を通じてかかなりの熱が各要素間で移動すると考えられる。
従来のガスタービンのサイクルでは、燃焼室とコンプレッサ、タービン相互間の熱移動などはほとんど考慮していない。しかし燃焼室からの熱移動は単に燃料消費率に関するエネルギー損失だけではなく、それがコンプレッサとタービンに伝わることによって、ガスタービンサイクル全体の性能に影響を及ぼすと考えられる。したがって本論文では、UMGレベルの超小型ガスタービンを想定し、特に燃焼室からコンプレッサとタービンへの熱移動を考慮したサイクル計算をいくつかのパラメータの下で行い、それらの影響を考察しUMGを断熱設計する上での提案をする。

2. モデルサイクル
本論文で用いる記号の説明を表1にまとめ示す。サイクル計算をするにあたって、MIT提案型2)の、薄型円筒状で燃焼室とコンプレッサ、タービンが隣接するUMGを想定した。図1の熱移動モデル図に示すように、燃焼室から燃料の発熱量の一部Qtがコンプレッサとタービンに移動すると仮定した。図2aにモデルサイクルのT-S線図を示す。添字は図1での位置と対応している。熱移動があるときのサイクルでは、燃焼器での温度上昇が抑えられ、その分コンプレッサに伝わった熱によってコンプレッサ出口の温度上昇が起こり、またタービンに伝わった熱はタービン出口での温度低下を抑制することになる。従って熱移動があるときの単純サイクルは、図2aにおいてn→2′→3′→4′→1で表される。図1は再生サイクルの場合を示していないが、通常のガスタービンと同様。

<table>
<thead>
<tr>
<th>記号</th>
<th>説明 [単位]</th>
<th>添字</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>温度 [K]</td>
<td></td>
<td>熱損失がある過程</td>
</tr>
<tr>
<td>P</td>
<td>内力 [MPa]</td>
<td>th</td>
<td>理論値</td>
</tr>
<tr>
<td>PR</td>
<td>内力比</td>
<td></td>
<td>燃焼室からの移動分</td>
</tr>
<tr>
<td>Q</td>
<td>熱量 [kJ]</td>
<td>c</td>
<td>コンプレッサ</td>
</tr>
<tr>
<td>Qp</td>
<td>定圧比熱 [kJ/(kg·K)]</td>
<td>t</td>
<td>タービン</td>
</tr>
<tr>
<td>Qc</td>
<td>定容比熱 [kJ/(kg·K)]</td>
<td>a</td>
<td>空気</td>
</tr>
<tr>
<td>Qs</td>
<td>ポリトロープ比熱 [kJ/(kg·K)]</td>
<td>g</td>
<td>燃料</td>
</tr>
<tr>
<td>γ</td>
<td>比熱比</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>n</td>
<td>ポリトロープ指数</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>m</td>
<td>質量流量 [kg/s]</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>FA</td>
<td>燃焼比</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>E</td>
<td>各種効率</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>ΔHf</td>
<td>燃料の発熱量 [kJ/kg]</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>HT</td>
<td>熱移動割合</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>R</td>
<td>熱分配割合</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>S</td>
<td>エントロピー [kJ/K]</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>U</td>
<td>区間</td>
<td></td>
<td>燃料ガス</td>
</tr>
<tr>
<td>ML</td>
<td>機械損失率</td>
<td></td>
<td>燃料ガス</td>
</tr>
</tbody>
</table>

第3回ガスタービン定期講演会
講演論文集、2003.6,（北見）
Download service for the GTSJ via 54.70.40.11, 2020/04/05.
にタービンを出た後の燃焼ガスとコンプレッサを出た後の圧縮空気で熱交換を行うことを想定している。
また、熱移動がないときの単純サイクルは $1 \rightarrow 2 \rightarrow 3 \rightarrow 4_w \rightarrow 3'$ で表され、再生サイクルは $1 \rightarrow 2 \rightarrow 2'' \rightarrow 3 \rightarrow 4_w \rightarrow 4'' \rightarrow 1$ で表され、それぞれ一般的なガスタービンサイクル計算を行った。

2.1 燃焼室からの熱移動の定義
燃焼室から移動する熱量 Q_{HT} は、最高温度が T_2 から T_3 に低下する時に放出される熱量とし、そのときの熱移動割合 HT を T_2 と T_3 を用いて以下のようにして定義した。

$HT = \frac{T_2 - T_1}{T_3} = 1 - \frac{T_1}{T_3}$ \hspace{1cm} (1)

図1 燃焼室からの熱移動モデル図

従って熱移動量 Q_{HT} は以下のようになる。

$Q_{HT} = (m_a + m_f) \cdot C_{pr} \cdot (T_2 - T_3) = (m_a + m_f) \cdot C_{pr} \cdot T_2 \cdot HT$ \hspace{1cm} (2)

この Q_{HT} はコンプレッサとタービンのみに移動し、その他の周囲には逃げないものとした。Q_{HT} のうち、コンプレッサに流入する熱量を Q_{HLT}、タービンに流入する熱量を Q_{HT} とおき、また R_c と R_t をそれぞれ Q_{HLT} がコンプレッサ及びタービンに分配される割合と定義すると、

$R_c + R_t = 1$ \hspace{1cm} (4)

$Q_{HLT} = Q_{HLT} + Q_{HT} = Q_{HLT} \cdot R_c + Q_{HLT} \cdot R_t$ \hspace{1cm} (3)

となる。

2.2 コンプレッサ過程とタービン過程
コンプレッサに Q_{HLT} が流入するとその効率は変化すると考えられ、圧力比一定のときコンプレッサ出口温度 T_2 を解析的に求めることはできない。そこでコンプレッサ過程をポリトロープ指数一定のポリトロープ過程とし、Q_{HLT} があるときのときの流入熱を考慮することにより T_2 を求めた。Q_{HLT} があるときのポリトロープ比熱 C'_w はポリトロープ指数 n'_c を用いて

$C'_w = \frac{n'_c - 1}{n'_c} \cdot C_w$ \hspace{1cm} (5)

と表される。また、

$n'_c = \ln \left(\frac{P_1}{P_2} \right) = \ln \left(\frac{P_1}{P_2} \right) - \ln \left(\frac{T_1}{T_2} \right)$ \hspace{1cm} (6)

より、n'_c は T_2 のみの関数となるため、C'_w も T_2 のみの関数となる。ここで Q_{HLT} がいないときコンプレッサでエントロピー增加に関与する全熱量を Q_{HT} と置き、Q_{HLT} があるときを Q'_{HT} と置くと、
\[Q_{12} + Q_{\text{he}} = Q'_{12} \] (7)

つまり、
\[m_a \cdot C_{p_a} \cdot (T_2 - T_3) + R \cdot (m_a + m_f) \cdot C_{pg} \cdot T_3 \cdot HT = m_a \cdot C_{p_a} \cdot (T'_2 - T_3) \] (8)

さらに燃焼比 \(FA = m_f / m_a \) を用いると
\[C_{p_a} \cdot (T_2 - T_3) + R \cdot (1 + FA) \cdot C_{pg} \cdot T_3 \cdot HT = C_{p_a} \cdot (T'_2 - T_3) \] (9)

また燃料室からの熱移動がある場合には、発熱量 \(Q_{\text{he}} \) を加える必要がある。式(1)と(2)より、
\[FA \cdot \Delta H_f \cdot E_b = (1 + FA) \cdot C_{pg} \cdot T_3 - C_{pg} \cdot T'_2 \] (10)
\[\therefore FA = \frac{C_{pg} \cdot T_3 - C_{pg} \cdot T'_2}{\Delta H_f \cdot E_b \cdot C_{pg} \cdot T_3} \] (11)

式(11)を式(9)に代入すると、熱移動がない場合の \(T_2 \) と \(T_3 \) は変わらないので、式(9)は \(T'_2 \) のみの関数となり、\(T'_2 \) を求めることができる。

タービン過程も同様にボリトロープ指数一定のポロとループ過程とし \(Q_{\text{he}} \) があるときとないときでの流入熱量を考えると以下の式が成り立つ。
\[C_{p_a} \cdot (T_2 - T'_3) + R \cdot C_{pg} \cdot T_3 \cdot HT = C_{p_a} \cdot (T'_2 - T'_3) \] (12)

上式はタービン出口温度 \(T'_3 \) のみの関数となり、熱移動がない場合の \(T_3 \) と \(T'_3 \) は変わっているので \(T'_3 \) を求めることができる。

2.3 コンプレッサ・タービンの一部のみに熱が流入する場合

図2bのようにコンプレッサ過程とタービン過程を等しい圧力比のところで2等分し、低圧区間 \(U_{LP} \) と高圧区間 \(U_{HP} \) に分け、一方の区間であれば燃焼室とコンプレッサあるいはタービン間を完全に断熱し燃焼室から全く熱が伝わらず、もう一方の区間であれば燃焼室から熱が移動して流入する場合を想定した。燃焼室から熱が流入しない区間では所定のコンプレッサ・タービン効率から求めたボリトロープ比熱 \(C_n \) を用い、熱が流入する区間は、断熱区間がない2.2の場合と同様の手順で求めたボリトロープ比熱 \(C_n' \) を用いた。

また、図2bはコンプレッサとタービンとともに \(U_{LP} \) が断熱されているサイクルを示しているが、どちらの区間を断熱するかは、コンプレッサとタービンで独立に設定できる。
2.4 各種効率

\[E_c' = \frac{T_2 - T_1}{T_2 - T_1} \quad E_1' = \frac{T_3 - T_4'}{T_3 - T_4} \]

熱効率 \(E_ah \) は

\[E_ah = \frac{(1+FA) \cdot C_{pe} \cdot (T_3 - T_4) - C_{pe} \cdot (T_2 - T_1) \cdot (1-ML)}{(1+FA) \cdot C_{pe} \cdot (T_3 - [T_2 ' or T_2 '])} \]

で求めた。分母[]内は、単純サイクルの場合は \(T_2 ' \) を、再生サイクルの場合は熱交換器出口温度 \(T_2 ' \) を代入した。

3. 計算結果と考察
3.1 熱効率 \(E_ah \) に及ぼす熱動移割合 \(HT \) の影響

本計算に用いた各種パラメータ値を表 2 に示す。図 3 に \(Q_{HL} \) が \(R_c = R_i = 0.5 \) の割合でコンプレッサ過程・タービン過程の全体に流入した場合の、熱動移割合 \(HT \) と熱効率 \(E_ah \) の関係を示す。図 3 は \(HT \) の増加に伴って \(E_ah \) は単調に低下することを示している。これより燃焼器部から発熱量の一部 \(Q_{HL} \) を UMGT の外部に放散させ、全てコンプレッサとタービンに伝わるという要因間の熱移動であっても、\(E_ah \) は低下することが分かった。この \(E_ah \) 低下の主な原因は、\(Q_{HL} \) と \(Q_{HL} \) の流入により \(T_2 ' \) と \(T_4 ' \) が上昇し、コンプレッサとタービンそれぞれの効率 \(E_c ' \) と \(E_1 ' \) が低下するためであると考えられる。これは、コンプレッサに関しては熱の流入により流体の体積が膨張することによって音分な圧縮仕事を必要とし、タービンでは流体温度上昇によって、仕事を変換に利用できる動力エネルギーが減少するという物理的イメージと一致する。

また \(T_2 ' \) と \(T_4 ' \) は熱交換器の有無によらずに決まるため、単純サイクルと再生サイクルともに自立運転ができなくなる時の \(HT \) \((E_ah = 0) \) は約 0.075 でほぼ等しい。またこの \(HT \) = 0.075 は燃焼器出口温度が 1600[K] から 1480[K] まで低下することに対応する。

3.2 熱効率 \(E_ah \) に及ぼす熱分配割合 \(R_c \cdot R_i \) の影響

図 4 に \(HT \) = 0.04 の場合の、コンプレッサへの熱分配割合 \(R_c \) と熱効率 \(E_ah \) の関係を示す。これより \(R_c \) が增加する、すなわちタービンへの熱分配割合 \(R_i \) が減少するにつれて \(E_ah \) が低下することが分かった。つまり同じ \(HT \) においてもタービンよりもコンプレッサに熱が分配される割合が大きいほど \(E_ah \) は低下することがわかった。これは、図 5 に \(R_c \) とコンプレッサ効率 \(E_c ' \) とタービン効率 \(E_1 ' \) の

<table>
<thead>
<tr>
<th>表 2 サイクル計算パラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_i) [MPa]</td>
</tr>
<tr>
<td>(T_j) [K]</td>
</tr>
<tr>
<td>(m) [kg/s]</td>
</tr>
<tr>
<td>(PR)</td>
</tr>
<tr>
<td>燃焼器出口温度 (T_2 ') [K]</td>
</tr>
<tr>
<td>CO₂燃焼熱(空気) (C_{a}) [kJ/(kg·K)]</td>
</tr>
<tr>
<td>CO₂燃焼(空気) (C_{a}) [kJ/(kg·K)]</td>
</tr>
<tr>
<td>燃焼ガス (C_{a}) [kJ/(kg·K)]</td>
</tr>
<tr>
<td>CO₂燃焼 (C_{a}) [kJ/(kg·K)]</td>
</tr>
<tr>
<td>比熱比 (空気) (\gamma_0)</td>
</tr>
<tr>
<td>比熱比 (空気) (\gamma_0)</td>
</tr>
<tr>
<td>水蒸気発熱量 (\Delta H_f) [kJ/kg]</td>
</tr>
<tr>
<td>コンプレッサ効率 (E_c)</td>
</tr>
<tr>
<td>タービン効率 (E_i)</td>
</tr>
<tr>
<td>燃焼効率 (E_b)</td>
</tr>
<tr>
<td>機械損失率 (ML)</td>
</tr>
<tr>
<td>燃焼室圧力損失率 (PL)</td>
</tr>
<tr>
<td>熱交換器効率 (E_{he})</td>
</tr>
</tbody>
</table>

Download service for the GTSJ via 54.70.40.11, 2020/04/05.

—126—
関係を示す。よって、$R_c = 1$ での E''_c の低下率が約 16% であるのに対し $R_c = 1$ での E''_c 低下率は約 29% であることから E''_c の方が熱の流入の影響を受けて低下しやすいことが主な原因と考えられる。この傾向は、エンジンのごく小さい領域、つまりコンプレッサ側の方が圧力曲線間隔が狭くなっているため、同じ熱量がコンプレッサとタービンに流入するとしても、コンプレッサの方が断熱過程の温度上昇よりも、より温度が上昇してしまうからであると考えられる。

図 3 熱効率 E_{th} における熱移動割合 HT の影響
($R_c = R_t = 0.5$)

図 4 コンプレッサへの熱分配割合 R_c が
熱効率 E_{th} に及ぼす影響 ($HT = 0.04$)

図 5 コンプレッサへの熱分配割合 R_c が
コンプレッサ効率 E''_c 、タービン効率 E''_t
に及ぼす影響 ($HT = 0.04$)

3.3 熱流入位置と熱効率 E_{th} の関係

図 6a にコンプレッサのみに熱が流入した場合 ($R_c = 1$) の単純サイクルでの熱移動割合 HT と
熱効率 E_{th} の関係を示す。低圧区間 U_{LP} に熱が流入する場合より、高圧区間 U_{HP} に熱が流入する場合の方が高い E_{th} を示した。再生サイクルの場合も同様の傾向を示した。図 6b にタービンのみに熱が流入した場合 ($R_c = 1$) の単純サイクルでの HT と E_{th} の関係を示す。タービンの場合も同様に、U_{HP} に熱が流入する方が U_{LP} に熱が流入する場合よりも高い E_{th} を示し、再生サイクルも同様の傾向であった。これより本サイクル計算条件のもとでは、コンプレッサ過程とタービン過程とともに U_{HP} よりも U_{LP} を断熱した方が高い E_{th} を得られることがわかった。
4. まとめ

燃焼室から発電量の一部がUMGTの外部に散散せずコンプレッサとタービンに伝わる場合でも、ガスタービンの熱効率E_hは低下し、本計算条件下では熱移動割合$HT=0.075$で自立運転ができなくなることがわかった。さらに同じHTの時、コンプレッサの方がタービンよりも熱流入境の影響を受けて効率低下しやすく、熱効率が低下することがわかった。また、コンプレッサとタービンの一部を断熱する場合、両者ともに低圧側を断熱した方が高い熱効率を得られることもわかった。

UMGTサイズの超小型ガスタービンの断熱設計では、燃焼室を極力断熱し熱が外部に伝わらないようにするのはもちろんのこと、タービン側よりもコンプレッサ側を、また両者ともに低圧側を重点的に断熱する必要があると提案できる。

謝辞

なお、本研究は一部平成14年度NEDO国際共同研究提案公募事業（発電技術）「超小型ガスタービン実用化先端技術」の補助を受けて行った。ここに記して謝意を表します。

参考文献

(2) 須之部 量観・藤江 邦男, ガスタービン, (1974) 共立出版

(3) 谷下 市松, 工業熱力学 基礎編, 第36版 (1989) p62, 97, 奥華書
DMEの基礎燃焼特性

＊小泉 浩美 井上 洋 小林 成嘉(日立)
成川 公史(中部電力)

1. 結言

最近、次世代の代替燃料としてジメチルエーテル(CH₃OCH₃、以下 DME と呼ぶ)が注目されており、DMEを用いた燃焼の研究が盛んに進められている(1)。DMEは多様な炭化水素系原料からの製造が可能であるとともに、燃焼時において非金属酸化物や、発電などに必要な有機化合物の生成が少なく環境負荷の低いクリーンな燃料である。また、毒性低く、加圧すると容易に液化する燃料でハンドリング性にも優れており、民生用燃料(LPG 代替燃料)、軽油用燃料(ディーゼル自動車など)、発電用燃料(火力プラント、燃焼電池)など幅広い利用が見込まれている。

DME の発電用燃料への適用にあたっては、燃料のシール材や燃料供給システムなどの検討が必要となると思われるが、ガスタービン燃焼器の開発においてはDMEの特性および燃焼性を考慮した開発が重要となる。しかしながら、DMEの燃焼特性に関するデータが少ないのが現状である。そこで本研究では、DMEの基礎的な燃焼特性を把握するために、層流燃焼速度試験ならびにガスタービン燃焼器を用い拡散燃焼特性を検討した。

本報ではその結果について報告する。

2. DMEの物性値および特性

表1に液体状態におけるDMEの物性値を示す。DMEの沸点は-25.1℃で、常温・常圧において無色透明の気体燃料となる。燃料の流動性を示す動粘度は 0.2cSt で、低粘性燃料であるため加圧ポンプのシール材の構造などについての検討が必要である。一方、気体状態におけるDMEの物性値を表2に示す。DMEの理論最高発熱量はメタン、プロパンよりも高いことから、通常の拡散燃焼においてはNOx濃度が高くなることが予想される。低NOx化には混合燃焼が有効であるが、発火温度が350℃とガスタービンの圧縮機排出空気温度よりも低いため、運転条件によっては予混合器流路内で自発火する可能性がある。本報告には含まれていないが、DMEをガスタービン燃料として適用する際には自発火に対する十分な検討が必要と考えられる。さらに、図1にDMEの蒸気圧と温度の関係をプロパンと併せて示す。DMEは加圧すると容易に液化する燃料で、その特性はプロパンと類似している。一方、ガスタービンでは燃料の圧力が大気圧から約2.0MPaまで変化するため、常温の場合、圧力条件によって気体や液体の状態が存在する。DMEを液体で供給する際には、プロモーターの新しい新規開発が必要なことを、起動時のように低圧条件では供給状況内で気化し安定な供給が難しいことなどから、プロパンでも実験のあった気体状態での供給が有利と考えられる。また、環境面を考慮した予混合燃焼では、液体よりも気体の供給が扱いやすと考えられ、本研究では、燃料蒸発器を用いDMEを気化して供給した。

表1 DMEの物性値(液体)

<table>
<thead>
<tr>
<th>物性</th>
<th>鎖油</th>
<th>DME</th>
<th>メタノール</th>
</tr>
</thead>
<tbody>
<tr>
<td>沸点</td>
<td>180-360</td>
<td>-25.1</td>
<td>64.8</td>
</tr>
<tr>
<td>密度（20℃）</td>
<td>0.83</td>
<td>0.67</td>
<td>0.79</td>
</tr>
<tr>
<td>発熱量</td>
<td>20-42</td>
<td>0.2</td>
<td>0.51</td>
</tr>
<tr>
<td>低位発熱量</td>
<td>42.7</td>
<td>28.9</td>
<td>40.1</td>
</tr>
</tbody>
</table>

表2 DMEの物性値(気体)

<table>
<thead>
<tr>
<th>物性</th>
<th>メタノール</th>
<th>DME</th>
<th>プロパン</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子量</td>
<td>16</td>
<td>44</td>
<td>0.016</td>
</tr>
<tr>
<td>密度</td>
<td>0.715</td>
<td>1.06</td>
<td>1.95</td>
</tr>
<tr>
<td>燃料重量比</td>
<td>50.2</td>
<td>28.9</td>
<td>46.5</td>
</tr>
<tr>
<td>発熱量</td>
<td>8000</td>
<td>44.1</td>
<td>1138.3</td>
</tr>
</tbody>
</table>

図1 DMEの温度と蒸気圧の関係

第31回ガスタービン定期講演会
講演論文集、2003、6、(北見)
3. 層流燃焼速度測定試験

3.1 燃焼速度測定装置

図2に、層流燃焼速度測定装置の系統概略図を示す。DMEは液取込式のポンプより供給され、蒸発器（能力50kg/h）によって気化した後、所定の流量に調整後ミキサーに供給する。プロパン及びメタンもそれぞれポンプより供給され、流量調整後ミキサーに供給される。一方、燃焼用の空気は圧縮機より供給され、ミキサーにおいて燃料と空気の予混合気を形成後、200メッシュの金網によって整流し、バーナーに供給する。ミキサーからバーナーまでの配管にはバンドヒーターが設けられ、バーナー上流側に設けた予混合気温度測定用熱電対の出力をもとにフィードバック制御することで、予混合気の温度を任意に調整することができる。使用したバーナーは縦比3:1の矩形ノズルであり、燃焼速度測定には直接写真による角度法を用い、図中示す火炎の頂角と予混合気流速により算出した。写真撮影にはズームレンズとペローズを用い、拡大して撮影した。

3.2 試験条件

表3に試験条件を示す。試験ではバンドヒーターの劣化を避けるため、予混合気温度を200℃に設定し各燃料とも空気流量35NL/min一定条件のもとで燃料流量を変化させ当量比を設定した。しかし、使用燃料及び当量比の設定条件によっては安定した火炎を得るのが困難な場合もあり、その際には空気流量を減少させ予混合気流速を低下させることで予混合気火炎を得るようにした。

表3 試験条件（層流燃焼速度試験）

<table>
<thead>
<tr>
<th>燃料</th>
<th>空気流量 (NL/min)</th>
<th>燃料流量 (g/min)</th>
<th>当量比</th>
<th>予混合気温度 (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>メタン</td>
<td>18</td>
<td>0.06</td>
<td>0.7</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.12</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>DME</td>
<td>28</td>
<td>0.15</td>
<td>0.7</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.41</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>プロパン</td>
<td>35</td>
<td>0.18</td>
<td>0.7</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.24</td>
<td>1.4</td>
<td></td>
</tr>
</tbody>
</table>

3.2 層流燃焼速度の測定試験

図3に予混合気温度200℃における当量比に対する層流燃焼速度の測定結果を示す。いずれの燃料も、当量比の増加と共に燃焼速度は速くなる傾向を示し、量論混合比で最大値をとり、燃料過濃側で低下する傾向を示す。メタンとプロパンの燃焼速度を比較すると、実施した試験範囲内においてメタンよりもプロパンの方が燃焼速度が速くなっていっている。両者の最大燃焼速度はメタンが80cm/s、プロパンが90cm/sである。これに対し、DMEは、メタン、プロパンよりも燃焼速度は速く、最大燃焼速度
は110cm/sに達している。この値はメタンの1.4倍、プロパンの1.2倍に相当し、更には燃料過濃領域でも燃焼速度が速いことから、DMEは、メタン、プロパンに比べて燃え易い燃料であり、発火温度も低いことも伴われて考えると、混合燃焼時の逆火ポテンシャルが高く、注意が必要である。

4. 拡散燃焼試験

4.1 拡散燃焼試験装置

図4に試験装置の系統概略を示す。DMEは蒸発器で発熱された後、流量計で流量調整後燃料ノズルに供給される。一方、燃料用の空気はヒーターによって所定の温度に昇温され、A1及びA2の系統に分岐された後、燃焼器に供給される。燃焼器に供給された空気は、排熱噴流によってライナーを冷却後、各燃焼空気孔、冷却孔及び空気旋回器より燃焼室内に流入する。燃焼器出口では、固定位置で常時サンプリングしてガス濃度（CO、THC、O₂、NOx、CO₂）を分析した。また、今回の試験では、燃料による発火温度分布の違いとNOx濃度の関係を比較検討するため、燃焼器出口に設けた2次元トラバース装置により燃焼室内の詳細な分布計測を行なった。計測では図中に示すよう、燃焼器中心から半径方向40mm、軸方向は燃料ノズル端面から250mmの範囲で合計40点のサンプリングを実施した。

4.2 モデル燃焼器の構造

図5に本試験に用いたモデル燃焼器ライナーの構造を示す。試験に用いたライナーは内径が120mm、長さが650mmでライナーには3列の燃焼空気孔と5列のフィルム冷却孔にて構成されており、冷却孔の内面にフィルム状の空気を供給するためのリップが取り付けられている。燃料ノズルが取合うライナーの両側には実機ライナーを模擬するためのルーバー冷却孔が設けられている。燃焼空気孔は、ライナー先端より100mm、154mm、370mmの位置にそれぞれ設け、ライナー先端から100mmまでの累積空気配分を全体の40%以下に抑え単一燃料ノズルで燃焼させたときの低負荷安定性を評価した空気配分としている。

図6に燃料ノズルの構造を、図7に燃焼器端部の拡大図を示す。燃料ノズルは16枚の空気旋回ベ
4.3 試験条件

表4に試験条件を示す。いずれの燃料においても、空気流量300Nm³/h一定条件のもと、燃料流量を変化させ燃焼器出口ガス温度を変化させた。燃焼器圧力を大気圧、空気温度は350℃一定条件に設定し、燃焼器出口ガス温度は610℃～1260℃の範囲で変化させ、燃焼器出口の排ガス濃度を測定した。また、燃焼器出口ガス温度610℃の条件においては、燃焼器内部の火炎温度とNOx濃度の分布計測を行ない、火炎温度とNOx濃度の関係について検討した。

4.4 試験結果および結果の検討

(1) NOxおよびCO排出特性

図8に燃焼器出口ガス温度に対するNOx排出特性を示す。いずれの燃料も燃焼器出口ガス温度が上昇するにつれてNOx濃度は一旦減少し、さらにガス温度が高くなるにつれてNOx濃度は増加する傾向を示す。燃料の違いによるNOx濃度を比較すると、実施した試験範囲内でメタン燃焼によるNOx濃度が最も低く、DMEとプロパンのNOx濃度はメタンに比べ10ppm程度高くなっている。これは理論最高火炎温度が異なるためと考えられ、DME、プロパンの方がメタンに比べ局所的な火炎温度が高いためにNOx濃度も高くなるものと思われることが、燃焼器出口ガス温度610℃条件でプロパンよりもDMEの方が5ppm程度高くなっているが、燃焼器出クガス温度1000℃以上の条件では、両者のNOx濃度は同等である。燃焼器出口ガス温度の低い条件でメタンに比べDMEのNOx濃度が高くなる原因は、燃焼器頭部での火炎温度分布の違いであると考えられるが、これについては次節で詳細に検討する。次に、図9に燃焼器出口ガス温度に対するCO排出特性を示す。いずれの燃料も燃焼器出口ガス温度が低下するにつれてCO濃度が増加する傾向を示す。これは、燃焼温度の低下に伴い燃焼空気孔からの流入空気によって火炎が冷却されるためと考えられる。燃料の違いによるCO濃度の差はほとんどなく、DMEの未燃分排出特性はメタン、プロランと同レベルであることを確認した。
(2) 燃焼器内部の分布計測結果

図8において、同一の燃焼ガス温度においても燃料の種類によってNOx濃度が異なる結果となっている。そこで、これらのNOx濃度の違いが出る現象を理解するため、燃焼器内部の火炎温度とNOx濃度の分布を計測した。燃焼器出口ガス温度610℃条件における燃焼器内部の火炎温度、NOx濃度分布の測定結果を図10に示す。図中の横軸は、燃焼器の半径方向距離を示しており、縦軸はパートナーからの軸方向距離を示す。まず、メタン燃焼の火炎温度、NOx濃度について検討する。燃料ノズルから噴出された燃料は、空気旋回器より供給された空気と混合、燃焼し、図のように燃料ノズル近傍で高温度領域を形成する。測定結果では、軸方向距離25mm～100mmの範囲において火炎温度が1500℃前後の高温領域が存在している。燃焼器出口ガス温度610℃の条件では、100mmの位置から供給する燃焼空気によって、その下流側の温度は徐々に低下するが確認できる。一方、NOxは、この高温領域に対応して生成されるのが確認でき、高濃度領域は燃焼器の径方向中心部で且つ軸方向距離25mm～100mmの位置に存在している。メタンの燃焼器出口におけるNOx濃度は45ppm程度であるが燃焼器頭部では150ppmと高濃度となっており、燃焼器頭部がNOxの生成領域である。次にDME燃焼における分布計測結果を検討する。メタン燃焼と同様に燃焼器頭部に高温領域が存在するのが確認できるが、その領域内には1600℃を超える温度領域が存在しており、メタン燃焼に比べて火炎温度が高くなっている。さらには半径方向距離40mm、軸方向距離25mm～70mmにかけて1600℃以上の高温領域が存在しており、この結果、軸方向距離20mm～125mmにかけて300ppmを超えるNOxの高濃度領域が存在するのが確認できる。すなわち、燃焼器出口のNOx濃度がメタン燃焼に比べて高くなる原因は、燃焼器頭部に存在する火炎温度が高くなること
と、さらには NOx の生成に寄与するとと思われる高温領域が広いことが影響していると思われる。プロパン
の燃焼における火炎温度と NOx 濃度分布を見ると、プロパンも、メタンや DME と同様に燃料ノズル近傍に
高温領域が存在するのが確認できる。DME と同様に、1600℃以上の高温領域が確認できるものの、その温
度領域は DME と比較してやや小さい。したがって、300ppm 程度前後の NOx の高濃度領域は燃焼器中心
軸から半径方向 20mm、軸方向距離 20mm～100mm の範囲にとどまっており、結果として DME よりも NOx
濃度がやや低くなっている。

(3) 拡散火炎の様子
図 11 に、メタン、DME、プロパンの拡散火
炎の様子を示す。図中の写真は燃料ノズル
より 90mm 下流側に設けた火炎観察窓より
撮影したもので、燃焼ガスは鉛直上向きに
流れている。メタンの場合、観察窓の中心
から下流に向かって輝炎が確認され、燃焼器頭部では輝炎と青炎が混在している。また、DME と物性が類似
しているプロパンの場合、形成される火炎は観察している領域すべてにおいて輝炎となる。これに対し DME
の場合、火炎は青炎でありプロパンと火炎の様子が大きく異なっている。輝炎は燃料中の炭素分が発光して
いるものと考えられ、燃料と空気の混合過程で酸素不足の場合発生すると考えられる。大気圧試験におい
teは、DME の場合、合酸素燃料であるためメタン、プロパンよりも燃焼反応が促進される可能性が高く、煤
生成の心配の少ないクリーンな燃料であることが推定される。

5. 結言
DME の基礎的な燃焼特性把握を目的に、層流燃焼速度試験ならびにモデル燃焼器による大気圧拡散
燃焼試験を行ない、メタン、プロパンと比較した結果、以下の知見を得た。
(1) DME の層流燃焼速度はメタン、プロパンよりも速く、予混合気温度 200℃における最大燃焼速度は
110cm/s である。この値はメタンの 1.4 倍に相当し、DME は燃えやすい燃料である。
(2) 拡散燃焼において、DME はメタンよりも NOx 濃度が高くなる。一方、CO 排出特性は、DME、メタン、プ
ロンパンともほぼ同等である。
(3) DME がメタンよりも NOx 濃度が高くなる原因は、燃焼器頭部の火炎温度が高くなるためと考えられる。
いずれの燃料も燃焼器頭部の NOx の生成領域となっており、その領域内の最高温度、高温領域の面
積によって NOx 濃度が異なっている。
(4) 大気圧試験においては、DME の拡散火炎は青炎であり、メタン、プロパンのような輝炎は発生しない。

6. 参考文献
(1) 坂 之助ほか 2 名：ジプロチルエーテル (DME) を燃料とした圧縮点火機関の性能と排気特性：日本機械学会論文集、No.97,1998
(2) 成川ほか 3 名：ジプロチルエーテルの基礎燃焼特性：2002 年度機械学会年次大会講演論文集、Vol IV、pp185–186、2002
(3) 小泉ほか 4 名：予混合バーナー火炎の付着点近傍の熱流体力学的構造：燃焼の科学と技術、Vol.6、pp273–282、1999
(4) 小泉ほか 5 名：石油ガス化中カリリー燃焼器の燃焼特性：第 28 回ガスタービン定期講演会講演論文集、pp105–110、2000
(5) 林ほか 5 名：多成分燃料の火炎温度による NOx 評価法の検討：第 28 回ガスタービン定期講演会講演論文集、pp99–104、2000
タービン翼列間における水素燃料流の3次元計算
（噴出孔配置の影響）

* 南雲 貴志（東京理科大学大学院）
戸田 和之 山本 誠（東京理科大学）

1. 緒言
現在、燃焼ガス中の有害物質による大気汚染や地球温暖化現象といった環境問題が注目されている。水素燃料は排水ガス中に有害物質を含まない環境負荷の低い燃料であり、また燃焼利用が可能であるため化石燃料に代わる新たなエネルギー資源の有力候補と考えられている。ヨーロッパ各国では液体水素を航空機燃料として利用するための調査が2000年より、既に開始されている1)。一方、次世代航空機のエンジンでは高効率、軽量化、低環境負荷といった性能向上が必要とされているが、現在までにこれら全てを満足するようなエンジンの改良・開発は達成されていない。これらの背景より、著者らは水素を用いたタービン翼間燃料サイクルを新たに提案した。本サイクルの特徴は、タービン翼表面から水素を噴出し翼間内で燃焼プロセスを行うことで、燃焼室を省略した航空機エンジンを実現できる点にある。これまでの研究において、タービン段における水素の完全燃焼を仮定したサイクル解析2)や、タービン翼列間における水素燃料を伴う乱流場を数値的に再現し3)、本概念の有用性と実現可能性を示した。
本論文では、タービン静翼上に設ける燃料噴出孔の配置を吟味する。噴出孔の配置により、翼間における水素の燃焼状態や翼面温度は大きく変化するため、本概念の実現には翼間燃焼に適した噴出孔配置が必要である。水素燃料を伴うタービン翼間の3次元計算を実施することにより、壁面温度の過剰な上昇を抑え、かつ高燃焼効率を実現できる噴出孔配置を明らかとする。

2. 支配方程式
本研究では、化学反応を伴う3次元乱流場を扱う。それを満たす、支配方程式として圧縮性Navier-Stokes方程式、さらに考慮する化学種に対する輸送方程式を解くことにより流れ場が再現される。Reynolds平均を~、Favre平均を~として記述すると、時間平均量に対する支配方程式は以下のように表される。

\[
\frac{\partial \bar{p}}{\partial t} + \frac{\partial}{\partial x_j}(\bar{p} \bar{u}_j) = 0 \hspace{2em} (1)
\]

\[
\frac{\partial \bar{p}}{\partial t} + \frac{\partial}{\partial x_j}(\bar{p} \bar{u}_j + \bar{p} \delta_j) = \frac{\partial}{\partial x_j} \left(\tau_{ij} - \bar{p} u_i u_j \right) \hspace{2em} (2)
\]

\[
\frac{\partial \bar{p}}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{p} \bar{\alpha}_j + \bar{p} \right) = \frac{\partial}{\partial x_j} \left(\tau_{ij} \bar{u}_j - \bar{q}_j - \sum_{j=1}^{n} \bar{j}_{ij} \bar{h}_j - \bar{\rho}_j \bar{h}_j \right) \hspace{2em} (3)
\]

\[
\frac{\partial \bar{p}}{\partial t} + \frac{\partial}{\partial x_j} \left(\bar{p} \bar{\alpha}_j \right) = -\frac{\partial}{\partial x_j} \left(\bar{j}_{ij} + \bar{\rho}_j \bar{v}_j \right) + \bar{u}_j \hspace{2em} (j = 1, 2, \ldots, n) \hspace{2em} (4)
\]

ここで、\(\bar{v}_j \)、\(\bar{j}_{ij} \)、\(\bar{\alpha}_j \)、\(\bar{h}_j \) は化学種 \(j \) の質量分布率、\(k \) 方向への拡散流束、単位体積当たりの生成速度、比エンタルピを表している。また、時間平均操作に伴い現れる流速、化学種濃度、エンタルピの変動による運動量、化学種、エンタルピの乱流輸送係数 \(\bar{\rho}_j \bar{u}_j \)、\(\bar{\rho}_j \bar{v}_j \)、\(\bar{\rho}_j \bar{h}_j \) は標準型 \(k - \varepsilon \) モデル4)を用いて、Bousssinesq の湍流仮説と勾配拡散により記述される。

第31回ガスタービン定期講演会
講演論文集. 2003. 6. (北見)
化学種の輸送方程式中における生成項には、過去の研究より最も高い予測性能、安定性、低計算負荷を有するChen et al.の5段階簡略モデルを適用している。なお、エンタルピや比熱といった熱力学的諸量は、JANAFデータのから温度の関数として与えている。

3. 計算方法
3.1 数値計算手法
本研究では、数値計算手法として有限差分法を用いる。燃焼過程における時間スケールは、流れの時間スケールに比べて非常に小さく、また、燃焼反応における素反応の時間スケールは各反応間で大きく異なる。その結果、燃焼流の数値計算では、流れの流動と化学反応との間にStiffness問題が生じる可能性がある。それゆえ、本計算では時間積分に対して半陰解法を採用している。すなわち、化学反応項はCrank-Nicolson法により陰的に、その他の項は2段階Runge-Kutta法により陽的に計算される。空間微分に対しては、数値安定性と精度を考慮して、非粘性項にYee-Hartenの2次精度風上型TVDスキーム、粘性項に2次精度中心差分を適用している。

ターピン翼間の流れと水素噴出孔近傍の複雑な流れを、単一の計算格子により像画することは非常に計算負荷を要するため、本計算では重格子法を導入している。ここで、同一空間に位置する輸送変数の各計算格子間における整合性を維持するために、本計算では線形補間を用いて格子間における輸送変数の補間を実施している。

3.2 計算条件
図1は本計算に適用された直線ターピン翼列の概略図を示している。翼弦長は51.55mm、ピッチは36.0mm、スタッド角度は56.0degであり、空気は流入角度0degで計算領域に入り込む。また、本計算ではターピン初段の静翼間における水素燃焼流の調査を行う。GE90エンジンの離陸時におけるサイクル解析を実施し、流れ場の条件を設定した。HP圧縮機通過後、空気の全温、全圧はそれぞれ903.42K、3.92MPaとなり、流れはターピン静翼の流出境界において3.36MPaまで膨張すると仮定した。

3.3 水素噴出条件
水素噴出孔は直径3.0mmの円形であり、図2のように翼の負圧面側に位置している。空気と水素の速やかな混合を期待し、各噴出孔の配置には千鳥格子形状を採用した。本計算では、各噴出孔の間隔を2d、3d、4dと変化させて燃焼過程に及ぼす影響を調べる。なお、本システムにおける燃焼形態は、ターピン静翼面上の噴出孔から噴射される水素と高圧空気流の自然着火による拡散炎である。水素の噴出条件は次に示すように設定された。静温は900Kであり、その噴出方向は翼面に対して垂直である。さらに各噴出孔で水素噴出量は等しく、流入空気に対する水素の全質量流量は量論混合比である。

Fig. 1 Schematic of linear turbine cascade Fig. 2 Blade shape and jet configuration
3.4 計算格子

本研究では、図3のように8要素で構成される3次元構造格子が用いられた。Maingridでターピン翼列全体の流れ場の計算し、Subgrid 1を用いて翼周りの流れ場とターピン翼の空力性能を評価する。さらにSubgrid 2-7により、各水素噴出孔近傍の流れ場を詳細に計算する。翼周縁と翼表面に格子点を集中させており、全格子点数はおよそ165,000点である。

3.5 境界条件

Maingridの流入境界では、全圧、全温、化学種、流入角度を固定し、マッハ数を計算領域から外挿する。流出境界では、圧力を固定しその他の変数を計算領域から外挿する。また計算負荷を考慮して周期境界条件がスパン方向に適用されている。Subgridでは、翼表面にno-slipの断熱条件を課し、乱流量は壁面数を用いて導出する。水素噴出孔では、ジェットの静圧を計算領域から外挿し、その他の変数は上記の設定値に基づいている。さらに重合格子法の導入に従い、Subgridにおける接合部の境界では、別の計算格子内の変数を用いた線形補間を適用している。

4. 結果と考察

翼間燃焼サイクルを実現するためには、翼面温度の過剰な上昇を抑える燃焼形態を適成しなければならない。ここでは、噴出孔間隔が3dのケースにおける結果に基づき考察を行う。

4.1 3次元的な火炎の形成

図4は主流に垂直な断面における温度分布の下流方向変化を表している。なお、図には示されていないが図のような温度分布はスパン方向に対し周期的に現れる。このような火炎構造は水素噴出孔周辺におけるジェットの相互干渉によるものであり、このとき翼面上から火炎が浮上する現象が確認された。火炎の浮上は以下のメカニズムによるものと考えられる。噴出孔1（図2参照）で形成される火炎は、翼面に張りついた状態で噴出孔1の下流へ流れ、翼面上で火炎の占める領域は下流へ流れるに従い増加する。一方、噴出孔4からも火炎は形成されるが、噴出孔1から形成される火炎の存在によりスパン方向への拡がりが制限される。こうして噴出孔4から生じる縦横が翼面に対して垂直方向に強さを増し、噴出孔4から形成された火炎は他方の火炎上に流れ、火炎の浮上が生じる。結果として、これらの火炎は結合し大スケールの周期的な波打つ火炎構造を形成し、ターピン下流へ広く拡散していく。これらの現象は流れの3次元構造の効果により生じしたものと考えられる。

4.2 翼面温度

図5、図6はそれぞれ、翼表面における水素のモル分率と温度の分布を示している。水素と空気の界面では、燃焼により翼面温度が最大2900K近くまで上昇している。また、噴出孔4の前面面でより温度上昇が見られないのに対し、噴出孔1では孔の前面においても温度上昇を確認できる。これは、翼面より噴出された水素が噴出孔周辺の境界層中に再循環領域を形成するため、この再循環が炎災の効果を有し得る領域から燃焼が開始するためである。

一方、噴出孔1-2-3の下流領域では水素が翼表面で多量に存在しており、この領域では未然水素による脱熱が有効に機能するため壁面温度の上昇が2000Kほどに抑制されている。脱熱冷却が有効に作用
Fig. 4 3-dimensional temperature distributions

Fig. 5 Hydrogen mole fraction distributions on blade surface

Fig. 6 Temperature distributions on blade surface

する領域が噴出口1-2-3 の下流では拡大するのでに対して、噴出口4-5-6 の下流に進むに従い減少してい
る。図 4 で示したように、この領域では噴出口1-2-3 による火炎と噴出口4-5-6 による火炎の相互干渉
により、火炎が翼面から浮き上がるためである。本ケースでは、わずかに浮き上がった火炎と翼面間で
激しく反応が生じ翼面温度が著しく上昇した。翼面の過剰な温度上昇を抑制するためには、噴出口周辺
に生じる火炎の相互干渉を促進する必要があるものと考えられる。

5. 結言
本研究では、タービン翼列間における水素燃焼を伴う乱流場の 3 次元数値シミュレーションを実施し、
水素噴出口の配置が翼面温度に及ぼす影響を調査した。噴出口間隔 3d の結果より得られた知見は以下の通りである。

(1) 3 次元的な渦構造と火炎間の干渉により、燃焼反応は大きく促進する。
(2) 流れ場の 3 次元的な干渉により、火炎は翼面上から浮き上がる。
本ケースでは、わずかに浮き上がった火炎と翼面間で激しく反応が生じ、翼面温度が著しく上昇した。火炎は翼面温度に影響を及ぼすよう、翼表面から離れた位置に存在しなければならない。噴出口の間
隔を変化させたケースにおける火炎分布と翼面温度に関する結果は講演時に示す。

参考文献
aribus/cryoplane/cryoplane.htm (2002)
発電用パルスデトネーションエンジンの作動解析

桜井敦司（埼玉大学大学院）、小原哲郎、大八木重治（埼玉大学）
＊村山元英（IHI）

1. 緒言
原理的に高効率が期待できるパルスデトネーションエンジン（PDE）は様々な応用の可能性が考えられており(1)，埼玉大学では連続作動の基礎研究を行っている(2)。航空用PDEとして、自己吸気による自立作動のために、デトネーションガスの一部をターボチャージャーに導入する研究(3)、(4)も開始されているが、我々は発電用PDEとして、図1に示すシステムの成立性検討を行い、高い発電効率が得られる目処を得た(5)。本システムはPDEにショックダンバー、タービン、ガスタービンを組み合わせたものであるが、技術課題として次のもののが考えられる。

(1) 1次燃料のPDE利用法
デトネーションを起し易いアセチレン、水素などの燃料は2次燃料であり、その生成のためのエネルギーコスト、コストなどを考慮すると、発電用燃料には適さない。従って、天然ガス、石油燃料などの1次燃料をPDEに用いる方策を要する。

(2) 衝撃波の減衰法
タービン破壊を避けるため、デトネーションで生じる衝撃波を十分に減衰させる必要がある。

(3) タービン脈動流の緩和
PDEでは間欠的にジェットを噴出し、タービンは脈動流での作動となるが、設計点以外での作動はタービン効率が低下するため、脈動流の緩和が望ましい。

(4) タービン入口温度の抑制および冷却法
デトネーション管出口ガス温度は2500K近くあり、そのままではタービンへの導入不能である。また、PDEでは高圧冷却ガス源がなく、ガスタービンと同様なタービン冷却ができないため、タービン入口前のガス温度抑制が必要である。

これらに対して、(1)は1次燃料を改質することにより解決できと考えられ、(2)～(4)についてはタービン上流のショックダンバーでデトネーションガスを膨張させてタービン入口温度を抑制し、衝撃波を十分に減衰させて脈動流を抑える必要がある。

本研究ではデトネーション管にショックダンバーを組合せたシステムの動特性を検討するために、素反応を考慮した非定常計算を行い、圧力、温度履歴を解析した。

2. 解析モデル
解析モデルを図2、解析条件を表1に示す。解析是非定常1次元計算であり、簡略化のため燃料は水素とした。

図1 タービン発電型PDEシステム
以下に解析モデルの概要及び仮定をまとめる。

(1) 化学種：H₂, O₂, N₂, H₂O, OH, O, H, H₂O₂, H₂O, He
(2) 素反応：19 (N₂ に関わる反応は無視)
(3) 基礎方程式：圧縮性オイラーファーム、化学種保存式
(4) 計算スキーム：Mccormack TVD 部分陰解法
(5) 出口開放端条件：自由境界
(6) 格子解像度：1mm

3. 解析結果

図3に先頭衝撃波面速度；V を、化学平衡より求めた CJ 速度；DcJ により無次元化して示す。横軸は管閉端面からの距離であるが、デトネーション管長さで無次元化した。デトネーション管内ではほぼ CJ 速度で伝播しており、妥当な解が得られている。衝撃波がショックダンパー内の空気と衝撃波が入射すると急激に減速し、伝播速度は半分以下にまで落ち着く。

図4に管長さ方向の圧力変化を、初期圧力により無次元化して示す。(a)は先頭衝撃波がデトネーション管出口に到達するまで、(b)はそれ以降の圧力変化である。時間はデトネーション管長さ/CJ 速度を特性時間として無次元化し、τ を表示した。空気内にショックが入射すると圧力スパイクは急速に減衰し、圧力ピーク値は徐々に減少する。ショックダンパー出口での圧力ピーク値は、ノイマンスパイクの半分以下である。

図5に管長さ方向の温度変化を、初期温度により無次元化して示す。図4同様、(a)は先頭衝撃波がデトネーション管出口に到達するまで、(b)はそれ以降の温度変化である。デトネーション管内ではデトネーション波面背後の管内膨張による温度低下があるため、温度ピークが形成されるが、ショックダンパー内に膨張することにより温度低下しピークが消滅する。一方、空気側には衝撃波による温度上昇が生じる。

表1 解析条件

<table>
<thead>
<tr>
<th>Initial Condition</th>
<th>Detonation tube</th>
<th>Shock damper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Pressure, p [kPa]</td>
<td>101.3</td>
<td>Air</td>
</tr>
<tr>
<td>Temperature, T [K]</td>
<td>298.2</td>
<td></td>
</tr>
<tr>
<td>Density, ρ [kg/m³]</td>
<td>0.855</td>
<td>1.178</td>
</tr>
<tr>
<td>Equivalence ratio, Φ</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Ignition Condition

Pressure, p [kPa]	405.3
Temperature, T [K]	1282
CFL number	0.30
Entropy viscosity	0.15

$L = 1450$ mm

図3 衝撃波伝播速度

図2 解析モデル
図6にデトネーション管出口とショックダンバー出口の圧力履歴を、初期圧により無次元化して示す。なお、図中デトネーション管を DT、ショックダンバーを SD と略した。デトネーション管出口では先頭衝撃波による鋭い圧力ピークがあるが、ショックダンバー出口では圧力ピーク値が半分程度に緩和されている。なお、各圧力履歴の2つ目のピークは閉端面での反射衝撃波によるものである。

図7にデトネーション管出口とショックダンバー出口における温度履歴を、初期温度により無次元化して示す。ショックダンバー出口ではデトネーション波による温度ピークが消減しており、最高温度レベルを抑えられる。また、温度ピークが消滅した後は、ショックダンバー内空気の衝撃波入射による温度上昇が見られる。

4. 結論

本研究では、ショックダンバーによるデトネーションガスの緩和検討の手始めとして、1次元非定常解析を行った。本解析条件においては、衝撃波面の圧力スパイクは急速に消減し、ショックダンバー出口での圧力変動幅はデトネーション管出口の半分程度に抑えられた。また、温度ピークも消滅し、ショックダンバー出口では最高温度レベルを下げられる結果となった。

参考文献

(1) 特願 2001-097814.
(3) J. Hoke et al., AIAA2002-0615.
(4) F. Schauer et al., AIAA2003-0891.
(5) 村山元英 他、平成14年度衝撃波シンポジウム 講演論文集

図4 管長さ方向の圧力変化
図5 管長さ方向の温度変化

図6 デトネーション管出口とショックダンパー出口の圧力履歴

図7 デトネーション管出口とショックダンパー出口の温度履歴
耐熱金属オフセットフィンを用いた
プレートフィン形コンパクト熱交換器の研究

＊吉川 綱（防衛庁 4研）、姫路 裕二（防衛庁 4研）
重文男幸喜（防衛庁 4研）、赤間 信也（防衛庁 4研）

1. 緒論

ガスタービンの熱効率向上には、タービン入口温度（TIT：Turbine Inlet Temperature）の高温化及び、熱交換器による熱熱の回収が効果的である。しかしこれの小さいガスタービンにおいてはタービン翼等高温部に複数の冷却構造をとることが困難であるため、冷却構造をとらずに TIT の高温化を図ることを目指して、耐熱性に優れたセラミックス等を用いた小型ガスタービンの研究が進められてきた[1]。TIT の高温化に伴い、熱交換器についても使用温度の高温化が求められ、同時に、ガスタービンシステムの中で大きな容積を占める熱交換器の小型化、小型で高性能のガスタービンを実現するために必要不可欠である。本研究では、熱交換器の高温化及びコンパクト化に主眼を置き、主な伝熱面に耐熱金属製オフセットフィンを適用したプレートフィン形熱交換器を設計及び設計を試み、その基本性能について定常性能試験を実施して評価した。

2. オフセットフィンを用いた耐熱金属製コンパクト熱交換器の概要

2.1 熱交換器の設計

熱交換器の小型化のため、主な伝熱面をオフセットフィンとした耐熱金属製コンパクト熱交換器の概要を表1に示す。設計条件は、TIT1673K級ガスタービンを想定し、熱交換器の空気側入口温度は640K、燃料ガス側入口温度は1023K、空気側入口圧力は1.19MPa、燃料ガス側質量流量は0.59kg/sとした。燃料ガス側質量流量は、想定するガスタービンの1/4ブロックの質量流量として設定した。熱交換器に流入する空気質量と燃料ガス質量流量の比（以下、「流量比」という。）は、2次空気のための空気側の抽気を5%と仮定し0.95とした。

熱交換器の構造を図1、寸法を図2に示す。基本寸法は長さ515mm、幅503mm、長さ高さ215mm、容積0.04m³である。熱交換器構造は熱応力の緩和を狙い、左右対称構造としなかつ空気温度制度の周りに燃料ガス流路を設けている。伝熱面については、主な伝熱が行われる対向流部に空気・燃料ガス側流路とも細密なオフセットフィン[2][3]を適用した。交差流路は、空気・燃料ガス両流路とも対向流部への流体の流入出の抵抗を小さくするためストレート型フィンとした。流動している空気側流路と燃料ガス側流路は隔離板により隔離している。また熱交換器上下の最外側端部には側板を設置し、熱交換器全体の荷重支持をしている。熱交換器の材料は、燃料ガス入口温度1023Kで使用されることから、高温強度及び加工性を考慮し、Ni基耐熱金属材料であるハステロイXを使用した。

<table>
<thead>
<tr>
<th>項目</th>
<th>諸元</th>
</tr>
</thead>
<tbody>
<tr>
<td>熱交換器容積</td>
<td>0.04m³</td>
</tr>
<tr>
<td>燃料ガス側質量流量</td>
<td>0.59kg/s（流量比0.95）*</td>
</tr>
<tr>
<td>入口温度</td>
<td>1023K （燃料ガス側）、640K （空気側）</td>
</tr>
<tr>
<td>空気側入口圧力</td>
<td>1.19MPa</td>
</tr>
</tbody>
</table>

*（空気側質量流量／燃料ガス側質量流量）
2.2 耐熱金属製コンパクト熱交換器の製造

図3及び表2に交差流部、対向流部の空気、燃焼ガス側フィンの構造及び寸法を示す。プレートフィン形熱交換器の小型化には特に単位容積当たりの伝熱面積である伝熱面密度の増大化が効果的で、そのためにはフィン寸法を細密化することが重要である。空気側フィンについては、製作方法をプレートフィン形熱交換器の一般的なフィン加工法であるプレス方式から機械加工式とした。これにより、材料の折り曲げのみによる加工が可能となり、高さ及びピッチ1.5mmの細密なオフセットフィンを加工することができた。成形方法の概要を図4に、空気側のオフセットフィン断面形状を図5に示す。燃焼ガス側オフセットフィンは、入口圧力が小さく流速が大きいため、圧力損失が大きくなりないようフィン高さを4.5mmとした。燃焼ガス側オフセットフィンは、高さが大きくなると加工も比較的容易であるため、プレス加工で製作した。隔板は、板厚を薄くするほど伝熱抵抗が小さくなるが、強度上及び製作上の限界から0.5mmとした。側板は、板厚が薄いほど非定常時性能を緩和することができるが、構造上の強度を確保するため3mmとした。熱交換器の組立は、ロウ付けにより隔板とフィンを積層し、ヘッダ部については溶接により取り付け、組立後空気側流路を加圧することでリーグ試験及び耐圧試験を

図1 熱交換器構造

図2 熱交換器寸法

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>215mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>515mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>503mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>86mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>142mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>206mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46mm</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32°</td>
</tr>
</tbody>
</table>
実施した。図6に熟交換器外観を示す。

![図3 フィン構造](image1)

表2 フィン寸法（単位：mm）

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>ストレートフィン</th>
<th>オフセットフィン</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>空気側</td>
<td>燃焼ガス側</td>
</tr>
<tr>
<td>板厚</td>
<td>t</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>高さ</td>
<td>H</td>
<td>1.50</td>
<td>4.50</td>
</tr>
<tr>
<td>ピッチ</td>
<td>W</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>オフセット長</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

![図4 フィン成形方式](image2)

プレス成形方式

機械カム成形方式（空気側オフセットフィン）

![図5 空気側オフセットフィン断面](image3)

図5 空気側オフセットフィン断面

![図6 熱交換器概観](image4)

図6 熱交換器概観

3. 試験装置及び試験方法

定常性能試験での試験装置概要を図7に示す。熟交換器の定常性能を確認するために、燃焼ガス質量流量、流量比、燃焼ガス入口温度等をパラメータとして試験を行った。空気・燃焼ガス側の質量流量、入口圧力、圧力降下、出入口温度について計測を行い、空気側温度効率、圧力損失率の性能特性を算出

Download service for the GTSJ via 54.70.40.11, 2020/04/05.
した。質量流量については、空気・燃料ガス側とも熱交換器上流に設置したオリフィスにより計測し、また、入口圧力及び圧力降下については、空気・燃料ガス側とも熱交換器出入口に設置した圧力孔により計測した。空気・燃料ガス側出入口温度は熱交換器前後の配管中央で熱電対により計測した。これら
の点における温度計測値は、事前のトラバース計測による管内温度分布及び流速分布より、空気側温度
効率の性能計算に適用可能であることを確認している。また、この他にも、熱交換器空気・燃料ガス側
出口直後での流速分布の計測等も実施している。

図7 試験装置概要図

4．試験結果及び考察

4．1 空気側温度効率及び単位容積当りの伝熱量

図8に燃料ガス入口温度1023K，流量比0.95における空気側温度効率と燃料ガス流量との関
係を，図9に燃料ガス入口温度1023K，燃料ガス流量0.59kg/sにおける空気側温度効率と
流量比との関係を示す。当初，図8及び図9に示すように，設計点において空気側温度効率は69.5％
であった。この時，燃料ガス側出口直後での温度分布を計測した結果，図10に示すように燃料ガス側
に熱交換器中央部に流れの少ない偏流があることが推測された。空気・燃料ガス側の流量分布を考慮し
た伝熱計算プログラムを作成し，流速分布計測結果より熱交換器内部の偏流の状態を図10の計算入力
で示す分布であると定義して偏流の影響について調査したところ，表3の等々計算結果が得られた。表
3に示されるように，空気側流量がほぼ一様で燃料ガス側に図10のような偏流がある場合，熱交換器中
央部の燃料ガス側流量が空気側流量に比べて極端に低くなるため，空気側温度効率の低下を招くことが
分かった。また，燃料ガス・空気側に同調の偏流がある場合には空気側温度効率は向上することが分かっ
た。これらの結果より，ほぼ一様流に近い空気側にも同様に偏流を起こす遮へい物を空気入口ヘッダ
内に設置すると，図8及び図9に示すように空気側温度効率が向上し，設計点での空気側温度効率は7
5．2％の上昇することで，試験結果より本熱交換器の単位容積当りの伝熱量を計算すると，空気側温
度効率69．5％の時3800kW/m³以上，75．2％の時4100kW/m³以上であった。
図8 空気側温度効率と燃焼ガス質量流量
図9 空気側温度効率と流量比
図10 熱交換器出口直後の燃焼ガス側平均流速分布

表3 試験結果と計算結果による空気側温度効率比較（単位：%）

<table>
<thead>
<tr>
<th></th>
<th>試験結果</th>
<th>計算結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気・燃焼ガス側一様流</td>
<td>69.5</td>
<td>76.7</td>
</tr>
<tr>
<td>燃焼ガス側のみ偏流</td>
<td>69.5</td>
<td>69.9</td>
</tr>
<tr>
<td>空気・燃焼ガス側偏流</td>
<td>75.2</td>
<td>76.7</td>
</tr>
</tbody>
</table>

4.2 空気・燃焼ガス側圧力損失率
図11及び図12に、燃焼ガス入口温度1023K、流量比0.95における空気・燃焼ガス側圧力損失率と質量流量との関係について、空気入口ヘッダ内に遮へい物なしの場合とありの場合の試験結果を示す。流量が増加するに従い、圧力損失率は増加し、また空気側圧力損失率は遮へい物を設置することで増加している。燃焼ガス側圧力損失率については空気入口ヘッダ内に設置した遮へい物の影響はほとんどない。試験結果より、熱交換器の設計点である空気側流量0.56kg/s、燃焼ガス側流量0.59kg/sにおける圧力損失率はそれぞれ最大で1.4%、2.8%であった。
図11 空気側圧力損失率と空気流量
図12 燃焼ガス側圧力損失率燃焼ガス質量流量

5. 結論

熱交換器の高密度化及びコンパクト化に主眼を置き、タービン入口温度1673K級ガスタービンに適用することを想定して、耐熱金属オフセットフィンを用いたプレートフィン形コンパクト熱交換器を設計及び試作して定常性能試験を実施した。本熱交換器は燃焼ガス入口温度1023Kで使用可能であり、熱交換器容積0.04m³，空気側温度効率75.2％，空気・燃焼ガス側圧力損失率はそれぞれ1.4％，2.8％を達成した。また，熱交換器の単位容積当たりの伝熱量は約4000kW/m³であった。以上の結果，本熱交換器を使用することで，再生式ガスタービンシステムの更なる小型化が可能となると考えられる。

6. 謝辞

本熱交換器の設計及び製作で多大な協力を頂きました，石川島播磨重工業株式会社殿に厚く御礼申し上げます。

7. 参考文献
[1] 新エネルギー・産業技術総合開発機構セラミックガスタービン技術開発研究会：300kW級セラミックガスタービン研究成果集，1999．7
The Development of a Multi-Objective Genetic Algorithm Code for Optimization of Internal Cooling System

Ken-ichi Funazaki, Carlos Felipe Ferreira Favaretto and Hamidon Bin Salleh (Iwate University)

Key Words: Internal Cooling System, Impingement Cooling, Genetic Algorithm, Multi-Objective Optimization

Abstract: This paper shows an attempt to optimize an internal cooling system of turbine nozzles. The optimizing technique adopted here is developed based on Genetic Algorithms. The cooling system to be optimized is an impingement cooling combined with pin-fin cooling. The optimization is performed for several design parameters such as the impingement and discharging hole diameters, pin diameter, pin height and aspect ratio of the target plate. The computational grid is automatically generated and boundary conditions prescribed. A commercial CFD code is used to evaluate two target functions, which are the area-averaged heat transfer coefficient on the pin surface and the pressure loss between the impingement and discharging holes.

1. Introduction

Thanks to the state-of-the-art of cooling technologies such as impingement cooling or film cooling, turbine inlet temperature (ITT) of modern gas turbines has exceeded more than 1773K. The next target of turbine cooling designers is to drastically reduce cooling air consumption because thermal efficiency of the gas turbines are now saturating due to the large amount of cooling air mainly used in the turbine section. To meet this goal, one of the present authors investigated heat transfer characteristics of a cooling device that simply combines impingement cooling with pin-fin cooling in order to disturb the impingement jets on target plate but also to enhance the internal surface area. Very recently, Funazaki and Hachiya have carried out detailed numerical simulations on this integrated cooling device to clarify the effects of several dominating geometrical parameters of the device upon its heat transfer characteristics and pressure loss. Their approach has simply changed pin-height, pin pitches and offset of the pin location. Although some information useful for effective turbine cooling is obtained from this study, it is also clear that more systematic methods should be pursued for maximizing attainable average heat transfer inside the device or optimizing heat exchange performance in consideration of the pressure loss.

The use of Genetic Algorithms (GA) for multi-parameter optimization has become a popular technique in a wide range of engineering fields, such as building thermal designs and aerodynamic design of airfoils and gas turbine related applications. The reason for adopting such technique is found by the fact that it is robust, simple to implement and provides a multi-directional search. Conventional optimization methods such as "hill climbing" algorithms search in one direction of the domain only and are strongly limited to well behaved target functions. The GA, on the other hand, can handle complex non-linear target functions and searches for the optimum point in many directions, avoiding premature convergence at local peaks, which may not represent the global maximum of the search domain. The simplicity in translating the GA method into a computational code is also one of its great advantages. A GA code consists of basic mathematical operations, which can be parallelized in a very straightforward manner. Interested readers are encouraged to refer to the books of Goldberg and Deb for detailed information on GA.

Funazaki and Favaretto developed a single objective GA code applied to the design of internal cooling system for turbine nozzles, similar to the work of Funazaki and Hachiya. The system was completely automated and allowed the authors to assess the optimum configuration in terms of an efficiency marker. The target function was defined by an expression containing pressure loss and pin surface heat coefficient terms. This simplification was done in order to restrict the optimization task to a single target function. In reality however, the effects of pressure loss and heat transfer coefficient may present opposite trends towards the optimum, requiring an independent treatment from each other. In order to investigate the effects of these two quantities as distinct objectives a multi-objective GA code was developed by the authors. This code was previously applied to the optimization of secondary flow injection in axial turbines and was customized for the optimization of the cooling system for turbine nozzles.

2. Optimization Problem Description

The model for the current study (Fig.1) consists of one half of the actual cooling system, assuming that symmetry condition is valid for the side boundaries. The flow is injected from the impingement hole, encounters the target plate and pin surface, partially convects through the symmetric boundaries and partially exits the domain at the discharging hole.

The design parameters for this particular optimization problem are the aspect ratio of the target plate (AR), pin height (H), fraction of the maximum impingement hole radius (FR), fraction of the maximum discharging hole radius (FR) and fraction of the maximum pin radius (FR). The aspect ratio is defined as the ratio between L and L shown in Fig.1. In consideration of the layout of the grid blocks for mesh generation, the maximum magnitude of the impingement hole radius, discharging hole radius and pin radius were constrained according to AR (Table 1). The value for the radius was defined by the expressions below:
\[
\begin{align*}
R_{\text{max}} &= (L_1 - 6)/2 \quad \text{for } AR \geq 2.0 \\
R_{\text{max}} &= (L_2/2 - 6)/2 \quad \text{for } AR < 2.0
\end{align*}
\]

\[R = R_{\text{max}} + (R_{\text{max}} - R_{\text{min}}) \cdot FR\]

where: \(R_{\text{min}}=10\text{mm}\) is the minimum radius, \(R_{\text{max}}\) the maximum radius and \(FR\) the fraction of the maximum radius.

![Diagram of the internal cooling system](image)

Figure 1 - Internal cooling system diagram.

The objectives are minimizing the total pressure difference between the impingement and discharging holes (\(\Delta p_{\text{D}}\)) and maximizing the heat transfer coefficient on the pin surface (\(\text{htc}_{\text{pin}}\)). Since GA codes are usually programmed for minimization tasks, the second objective was expressed as the minimization of the inverse of the heat transfer coefficient on the pin surface (\(1/\text{htc}_{\text{pin}}\)).

Table 1 - Constraints adopted for the design parameters.

<table>
<thead>
<tr>
<th>Aspect Ratio ((L_1/L_2))</th>
<th>(1.5 \leq AR \leq 3.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin height (mm)</td>
<td>(40 \leq H_p \leq 80)</td>
</tr>
<tr>
<td>Fraction of maximum impingement hole radius</td>
<td>(0 \leq F_{R_{\text{D}}} \leq 1)</td>
</tr>
<tr>
<td>Fraction of maximum discharging hole radius</td>
<td>(0 \leq F_{R_{\text{D}}} \leq 1)</td>
</tr>
<tr>
<td>Fraction of maximum pin radius</td>
<td>(0 \leq F_{R_{\text{D}}} \leq 1)</td>
</tr>
</tbody>
</table>

3. Optimization Tool

3.1 Genetic Algorithms

The GA is a powerful optimization tool based on the theory of evolution, which means that the “best fit” individuals in one generation survive. The “fitness” in GA is the function to be optimized (target function) and the parameter set or problem variables are denominated a “chromosome”. In the present study, the real value of each design parameter is encoded as a string of binary digits. For instance, string 1010 refers to \(AR = 2.83\), string 1000 to \(H_p = 61.3\text{ mm}\), string 10 to \(F_{R_{\text{D}}} = 0.66\), string 11 to \(FR_{\text{D}} = 1.00\) and string 00 to \(FR_{\text{D}} = 0.00\). The strings for each one of the parameters are blended into a large string, forming the chromosome 10101000101100. The GA works with a number of chromosomes for each iteration or generation, providing a search in multiple directions of the domain simultaneously. Preliminary tests with the GA code here described showed that a constant population size of 40 chromosomes was suitable for the optimization task.

The starting point for an optimization using GA is a process called initialization. The initial population of chromosomes can be generated automatically by invoking a pseudo-random number subroutine, usually available in computer language compilers. The GA converges to the same result independent of the starting population.

After the initial population has been created, the GA needs to evaluate the fitness for each one of the chromosomes belonging to the initial generation. This means judging how well each chromosome is performing according to their phenotype (design parameters). The tool used to evaluate the fitness is independent on the GA code and can be externally called by the program. This is a remarkable feature which allows GA to be applied in almost any research field. For the present optimization task, the commercial CFD code CFX-4.4 (CFX Technology Ltd.) was used (GA Technology Ltd.) was used for calculating the heat transfer coefficient on the pin surface and pressure loss between the impingement and discharging holes.

With the fitness values for the chromosomes of the initial generation calculated, the GA code must select the candidates for mating. In other words, the individuals will be rated according to their fitness and the ones with the highest fitness are likely to be selected for reproduction. This part is the most important one in a GA code since it will directly influence the search direction. In the case of single objective GA the criteria for selecting the best fit individual is based simply on the result obtained from the CFD analysis. For multi-objective GA, however, there will be a family of optimum solutions for each generation. Therefore, it is not possible to simply base the selection criteria on the “raw” fitness values. A fitness scaling is necessary. The procedure adopted in the present code is based on the non-dominated sorting technique. First, all 40 chromosomes in the population are evaluated according to their rank. The definition of rank states that an individual with rank one is the one who is not dominated by anyone else, i.e., no other chromosome is better than him in every objective. For instance, a chromosome that provides the lowest heat transfer coefficient on the pin surface and the lowest pressure loss is no worse than a chromosome that produces the highest heat transfer coefficient and the highest pressure loss. Both chromosomes are considered to produce an optimum solution, therefore, they are non-dominated and belong to the optimal front or Pareto optimal front. All chromosomes with rank higher than one are dominated. The rank thus indicates the number of solutions that dominate (are better in all aspects) each one of the chromosomes. The higher the rank, the further the distance from the Pareto optimal front.

After assigning the rank-based fitness, a niching operator\(^{(12)}\) among solutions of each rank is invoked. This technique is implemented in order to provide a suitable distribution of the optimal solutions along the front, avoiding sections of the curve clustered with points while others poorly represented. In terms of GA, it means that chromosomes in crowded regions (clustered points) should share more among themselves than chromosomes that are far from each other. From such definition stems the concept of sharing function, which is calculated based on the inter-chromosomal distance and the sharing parameter \(\sigma_{\text{share}}\). In the present paper \(\sigma_{\text{share}}\) was assumed as constant through all generations and equal to 0.138. This value was chosen based on preliminary GA calculations for a two-objective problem validated with the analytical solution. The niche count is then evaluated based on the sharing function for each one of the chromosomes.

The rank-based fitness is scaled by the niche count.

Based on the scaled fitness the selection process is performed in the same manner as for single objective GA. Several methods for accomplishing this task are described in the literature. The most common one is called roulette wheel, in which all chromosomes of a population share a certain sector of a wheel, proportional to their fitness. The wheel is then spun and the chromosome selected. This method, however, causes premature convergence of the results because the best fit chromosome tends to dominate the others and cause their early extinction. The GA will follow one direction, leaving other possible optimum locations behind. Considering these limitations, the stochastic universal sampling (SUS) selection method was chosen instead. This method is quite similar to the
previous one except that, in addition to the proportionally divided wheel, a uniform spaced scale is also defined around the wheel. The number of divisions of this scale equals the population size. Thus, only one spin is necessary for selecting all 40 chromosomes for mating. This method not only provides high probability of selecting the best fit chromosome but also offers a higher chance for chromosomes with poor performance to be selected, maintaining the diversity of the population. The set of chromosomes selected for reproduction is defined as mating pool.

After selecting the eligible chromosomes for reproduction, the recombination process is performed. The chromosomes mate (parents), generating two new chromosomes (children) in order to keep the population size constant. The genes or the string bits are exchanged between the children at a probability of 0.9. This value was increased from the one adopted for the single objective G4 code previously developed by the authors. In this way, the mutation operator, which is necessary for diversity of the population, could be eliminated. Like the selection process, there are many ways to perform recombination. The one-point crossover was chosen for the present paper. In this recombination method a bit location is randomly chosen. The information from the bit location just after the selected bit to the end of the string is exchanged between child1 and child2. For instance, suppose the selected bit location is 11, child1 = 10110110110111 and child2 = 11101010111000. After crossover, child1 would become 1011011110110100 and child2 11101011101111.

After the four main operations (selection, recombination, elitism and mutation) have been completed the children replace the current population of chromosomes. The process is repeated until the convergence criteria has been satisfied. Table 2 shows a summary of all G4 parameters adopted in the present paper.

<table>
<thead>
<tr>
<th>Table 2 - Genetic algorithm parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome length</td>
</tr>
<tr>
<td>Type of coding</td>
</tr>
<tr>
<td>Population size</td>
</tr>
<tr>
<td>Selection method</td>
</tr>
<tr>
<td>Recombination method</td>
</tr>
<tr>
<td>Crossover probability</td>
</tr>
<tr>
<td>Number of objectives</td>
</tr>
<tr>
<td>(\sigma_{\text{rate}})</td>
</tr>
</tbody>
</table>

3.2 Optimizer Implementation

The G4 code here described was developed in a hybrid FORTRAN/Perl/Linux shell script language. This technique was used so that the CFX-4.4 code could be combined with the optimizer. Figure 5 presents a flowchart describing the mechanism of the code.

One of the critical problems when using a G4 code is the CPU time. The fitness has to be evaluated for all chromosomes belonging to every generation. Thus, for a population of 40 chromosomes, after 10 generations, the flow solver would have been called 400 times. If each one of the solver executions are performed sequentially, the CPU time would be 400 multiplied by the time required for each run. In order to provide faster results fully automated parallel processing and database subroutines were implemented in the code. In the beginning of each generation, the code reads the database and discards all chromosomes that have already been solved. The grid system is then generated sequentially for the remaining chromosomes and the solution loop starts. The code submits to the queue the jobs to be solved until the number of available CFX-4.4 solver licenses has been reached. The pending jobs wait until another license is granted. The loop ends when all jobs have been submitted to the queue. After that, the post-processing tool is run in batch and the two objectives are evaluated.

3.4 Grid Generation

A FORTRAN code was developed by the authors in order to automate the computational grid generation. For every chromosome, the code reads the decoded real values for the design parameters, generates a multi-block grid system and exports it to the CFX-4.4 solver through an ASCII file. Figure 3 shows a mesh for \(R_1 = R_2 = R_3 = 20 \text{ mm} \) and \(H = 40 \text{ mm} \).
4.2 Computational Code
The three-dimensional, steady, Reynolds-averaged, incompressible Navier-Stokes and energy equations were solved with the finite difference CFX-4.4 computational code. A second-order differencing scheme using a body-fitted coordinate system was employed based on the Rhie-Chow algorithm\(^{(13)}\). That is, the code performs curvilinear transformations to map the complex flow domain in physical space to a simple (rectangular) flow domain in computational space. A non-staggered grid is used when solving the velocity components of the momentum equations. Considering the velocity-pressure algorithm, the SIMPLEXC method was adopted. In spite of the implementation of Rhie-Chow algorithm, checkerboard oscillations in the velocity and pressure usually associated with non-staggered grids was eliminated. All equations were solved using the Algebraic Multi-grid (AMG) method, described by Lonsdale\(^{(14)}\). This method solves the discretized equations on a series of coarsening meshes, internally produced by CFX-4.4. Detailed information on the theoretical basis of the software can be found in the CFX-4.4 Solver documentation\(^{(13)}\).

Convergence was improved by specifying 6 inner iterations for the energy equation (expressed in terms of enthalpy), 2 iterations for the turbulence equations and one iteration for the other variables. The number of outer iterations was found to be the most critical aspect related to the compromise solution between good accuracy and short computational time. After several trials it was concluded that 1000 outer iterations was a good measure.

4.3 Boundary Conditions
For the impingement hole surface, normal velocity was calculated so that the Reynolds number (based on the inlet hydraulic diameter) would equal 10,000. The other quantities prescribed at the inlet were temperature \(T_i = 323 K\), turbulence intensity \(T_i = 3.7\%\) and dissipation length scale \(\varepsilon = 0.01\). Non-slip boundary conditions were applied to the top wall, the target plate, the pin and the surfaces contouring the impingement and discharge holes (yellow surfaces in Fig.1). The temperature on these surfaces was assumed as constant and equal to 303K. Zero gradient condition was prescribed at the discharging hole. On all side boundaries (except the pin) symmetry condition was applied. The working fluid used in the calulations was air at a reference temperature of 288 K (molecular viscosity \(\mu = 1.969 \times 10^{-5} \text{ kg/s/m}\), density \(\rho = 1.088 \text{ kg/m}^3\), thermal conductivity \(k = 0.02759 \text{ W/m·K}\), specific heat at constant pressure \(c_p = 1.008 \times 10^3 \text{ J/kg·K}\)).

4.4 Turbulence Model
The Menter modified low Reynolds number \(k-\omega\) model\(^{(15)}\) was employed. In this model, the equations switch from the standard \(k-\omega\) model close to the walls to equations equivalent to the \(k-c\) model away from the walls, but for independent variables \(k\) and \(c\).

5. Results

5.1 Validation with Experimental Data
The numerical results for the upper and lower limits of the pin height (\(H_p = 40 \text{ mm}\) and \(80 \text{ mm}\)) were validated with experimental data obtained by the authors. In these analyses the radii for the discharging hole, impingement hole and pin were kept constant and equal to 20mm. The grid system for case \(H_p = 40 \text{ mm}\) is exactly the same one shown in Fig.3. Figure 4 presents the definition of the viewpoint used in the experiments. The description of the measuring techniques and other additional information can be found in the report of Hamdon and Funazaki\(^{(16)}\).

![Discharging hole](image)

Figure 3 - Grid system.

The grid system shown in Fig. 3 was highly optimized in order to reduce the number of nodes. Several coarse grids were run and results were compared to finer grid ones and experiments. After a reasonable agreement was found the final configuration was defined. The number of grid points was kept constant (126,047) so that the CPU time for one run would be approximately 5.5 hours.
5.2 Preliminary Pareto-Optimal Front

Figure 6 shows the population fitness for the initial generation (crosses) and generation 1 (triangles). The initial generation was randomly created, thus presenting a scattered distribution on the objective space. Population 1 was bred based on the G4 operators previously described. It can be observed that the set of solutions are tending to the region with low total pressure loss and low \(h_{\text{p}} \) (high pin surface heat transfer coefficient).

Figure 7 presents a magnified view of the population distribution previously shown in Fig.6. A dashed line was drawn to indicate the family of solutions belonging to each rank. The Pareto-optimal front corresponds to the dashed line for rank 1. All points lying on that curve can be considered to be the optimum solution. In spite of the low number of G4 iterations ran so far, the number of chromosomes representing the Pareto-optimum front is only one (denoted by number 1). After convergence has been reached it is expected to find all chromosomes of the population to have rank 1. In Fig.7 the chromosomes with rank 2 are also represented. These individuals are dominated by chromosome 1 because they have a lower performance. In Fig.8 the grid system and heat transfer coefficient distribution on the pin surface for chromosome 1 is presented.

In Table 3 the design and fitness values for the selected chromosomes are presented. The last row (indicated by \(D \)) refers to the datum configuration shown in Fig.5a. A comparison between the design variables for chromosome 1 and the datum reveals that only one major improvement was performed by the G4 code. The pin radius was reduced to its minimum possible value (\(R_p = 10.00 \) mm) while other parameters were almost unchanged. This resulted in a \(8\% \) increase of the pin surface heat transfer coefficient and \(23\% \) of...
reduction in the total pressure loss. The trends in Table 3 partially agree with the single objective optimization results of Funazaki and Favaretto169. The small pin radius contributes for a substantial loss reduction due to the reduced blockage to the flow. The experimental data (Fig.5) also suggests that a small pin height would produce higher heat transfer coefficient on the pin surface. The multi-objective G4 code enabled an independent treatment of loss and heat transfer, thus retaining the small pin height (Hp = 40 mm) in the Pareto-optimal front.

| Table 3 - Selected Optimal Solutions. |
|---|---|---|---|---|---|---|
| AR | Hp [mm] | Rr [mm] | Rd [mm] | Rp [mm] | h\textsubscript{m} [W/m2K] | \Delta P\textsubscript{R} [Pa] |
| 1 | 2.03 | 40.00 | 21.79 | 21.79 | 10.00 | 43.85 | 19.31 |
| 2 | 1.77 | 53.33 | 20.49 | 20.49 | 10.00 | 39.10 | 21.12 |
| 3 | 3.30 | 50.66 | 20.31 | 20.31 | 10.00 | 40.19 | 21.72 |
| 5 | 2.00 | 40.00 | 20.00 | 20.00 | 20.00 | 40.42 | 24.98 |

Although it may be premature to say, the solution obtained so far showed that the pin radius is the main variable for the present optimization task. If this tendency is confirmed after the convergence of the G4 run has been achieved, future optimization tasks with less variables may be of interest. Since the CPU time of the present G4 code directly depends on the number of binary digits used to represent the design variables, reducing their number will provide a less costly numerical analysis.

6. Concluding Remarks

The present study described the development of a multi-objective G4 code and its application to the optimization of an internal cooling system for turbine nozzle vanes. The genetic algorithms have proven to be a useful tool for tackling the challenging design tasks of modern gas turbines. The development of a hybrid FORTRAN/Perl/UNIX shell program enabled the authors to combine the G4 code with a commercial software.

Though still quite premature, the results revealed that small pin height with small pin are beneficial for reducing the total pressure loss between impingement and discharging holes as well as increasing the heat transfer coefficient. The pin radius seems to be the dominant variable in the optimization task.

The methodology adopted in this study may be applied to many other practical engineering problems. However, the authors acknowledge the necessity of improvements in the G4 code. In particular, further investigation on non-dominated sorting and the implementation of an elitist model in the selection process.

Acknowledgements

The second author acknowledges the financial support of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

15) CFX-4.4 Solver, 1999, AEA Technology.
複合型インジン冷却構造の研究

＊仲和子由紀，山崎栄道（石川島播磨重工業株式会社）
吉田豊明，三村宿雄（航空宇宙技術研究所）
松野仲介，今井良二（石川島播磨重工業株式会社）

1. まえがき

航空用や発電用ガスタービンの高効率高性能化に伴いタービン入口温度は上昇を続けている。近年の冷却技術の進歩によりタービン入口温度が可能になったが、その一方で必要とされる冷却空気流量は増加傾向にあり、ガスタービンのさらなる性能向上には冷却空気流量で高い冷却性能を発揮する革新的な冷却構造が求められている。このような冷却構造としてピンフィンで内部伝熱面積を拡大した複合型インジン冷却構造を考案した。本研究では複合型インジン冷却構造の冷却性能試験を実施し、本構造に対する冷却性能予測方法を考案・検証したので本論文にて報告する。また、複雑構造で懸念される応力集中による疲労強度低下についても疲労試験により評価したので報告する。

2. 記号の説明

<table>
<thead>
<tr>
<th>符号</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>表面積 [m2]</td>
</tr>
<tr>
<td>a_p</td>
<td>ピン断面積 [m2]</td>
</tr>
<tr>
<td>F</td>
<td>熱伝達率ファクター [-, 式5]</td>
</tr>
<tr>
<td>F_p</td>
<td>ピン効率ファクター [-, 式5]</td>
</tr>
<tr>
<td>h</td>
<td>熱伝達率 [W/(m2K)]</td>
</tr>
<tr>
<td>N_p</td>
<td>ピン数 [-]</td>
</tr>
<tr>
<td>Re_t</td>
<td>試験片の主流流れ方向長さと主流平均流速に基づく主流れレイノルズ数 [-]</td>
</tr>
<tr>
<td>Re_e</td>
<td>インジン孔径と冷却空気平均流速に基づく冷却側レイノルズ数 [-]</td>
</tr>
<tr>
<td>δ_p</td>
<td>ピン間隔 [m]</td>
</tr>
<tr>
<td>T</td>
<td>温度 [K]</td>
</tr>
<tr>
<td>u_b</td>
<td>ピン効率理論式の数 [-, 式3]</td>
</tr>
<tr>
<td>Z</td>
<td>ピン高さ，インジン高さ [m]</td>
</tr>
<tr>
<td>k_er</td>
<td>メタルの熱伝導率 [W/(mK)]</td>
</tr>
<tr>
<td>ϕ</td>
<td>ピン効率 [-, 式3]</td>
</tr>
<tr>
<td>η</td>
<td>冷却効率 [-, 式1]</td>
</tr>
<tr>
<td>g</td>
<td>主流側，主流</td>
</tr>
<tr>
<td>in</td>
<td>インジェクション</td>
</tr>
<tr>
<td>N</td>
<td>新規冷却構造</td>
</tr>
<tr>
<td>p</td>
<td>ピン表面</td>
</tr>
<tr>
<td>t</td>
<td>ターゲット</td>
</tr>
<tr>
<td>w</td>
<td>主流側メタル壁</td>
</tr>
<tr>
<td>1</td>
<td>ピンがない場合</td>
</tr>
</tbody>
</table>

3. 複合型インジン冷却構造

複合型インジン冷却構造とは、図1の模式図に示されたようにインジン孔を有する面とターゲット面の間に伝熱面積拡大を意図してピンフィンを配置した冷却構造である。

図1 複合型インジン冷却構造模式図
4 冷却性能試験

ピンフィンによる伝熱面積拡大効果を確認するために、ピン密度の異なる2種類の複合型インビジリ冷却構造を試験片を用いて冷却性能試験を実施した。

4.1 試験方法

4.1.1 試験装置

試験は独立行政法人航空宇宙技術研究所所有の高温風洞を用いて実施した。風洞全体の構成を図2に、試験片を取付ける試験部詳細を図3に示す。主流ガス温度は、高温風洞に設置されている熱電対2点で計測し、冷却空気温度は試験片を取り付けた空気循環内部の空気温度を熱電対で計測した。試験片表面温度は赤外線カメラで計測し、冷却性能は面積平均温度で評価した。なお、赤外線カメラでの計測温度は試験片中央部に接した熱電対で校正した。

4.1.2 試験片

冷却性能試験はインビジリ孔とフィルム孔に囲まれた単位面積あたりにピン1本の基本型と、単位面積当たりにピン4本の微細型に対して実施した。図4に試験片構造を示す。これにはレーザー焼結コアを用いた鋳造品で、材料は高温ターピン翼に使用されるNi基合金である。なお、冷却性能予測の境界条件を求めるために、インビジリ

図2 高温風洞全体図

図3 試験部詳細

図4 冷却性能試験用試験片構造
孔のみを持つ熱伝達率計測用の参照型と、インパーソン孔およびフィルム孔を持つフィルム効率計測用の従来型を用意した。これらの試験片の外形および孔配置は図4と同じで、機械加工に際し、製造時に用いて製造した。従来型はその名の示すとおり従来の冷却構造を模倣しており、インパーソンによる伝熱面積拡大効果を確認するための基準の冷却性能を計測する試験にも使用した。

4.1.3 冷却性能試験条件

試験条件は実機条件と似たように、主流ガス条件を、試験片長さと主流平均流速に基づくレイノルズ数 Re₉ = 1×10⁶〜1×10⁶に、冷却空気条件を、冷却孔直径と平均流速に基づくレイノルズ数 Re₉ = 1×10⁴〜5×10⁴に設定した。計測精度を考慮するとできるだけ低い主流ガス温度での計測を望み、検討の結果、主流ガス温度は673K(400℃)に設定した。フィルム冷却性能に大きな影響があるとされる主流ガスと冷却空気の密度比が実機と同等レベルの2程度となるように、冷却空気温度は室温レベルに設定した。

4.1.4 冷却効率予測方法

冷却効率は以下に定義される。

\[\eta = \frac{T_s - T_{wgs}}{T_s - T_{cin}} \quad (式1) \]

複合型インパーソン冷却構造でも伝熱モデルは従来の冷却構造と同じと考え、一次元の熱伝導方程式から冷却効率を算出することとした。この場合、複合型インパーソン冷却構造はピンフィンによる伝熱面積拡大効果を考慮した冷却側有効伝熱面積という変数で特徴付けられる。タゲット面とピン表面の平均熱伝達率が等しい場合は、ピンによる伝熱面積拡大効果を円筒フィンのフィン効率を用いて予測すると考えられる。船崎ら[11]は基本型構造において感温液晶法による熱伝達率計測を実施しており、タゲット面とピン表面の平均熱伝達率がほぼ等しいと報告している。そこで、フィン効率を用いて冷却側有効伝熱面積を次式により求めた。

\[A_{c,eff} = A_c + N_p a_p + \phi^h N_p S_p Z \quad (式2) \]

\[\phi^h = \frac{\tanh u_b}{u_b} \quad (式3) \]

\[u_b = Z \sqrt{\frac{h_{c,cor}}{k_n a_p}} \quad (式4) \]

冷却効率を求める際の境界条件のうち、主流側熱伝達率とフィルム効率は試験により求め、冷却側熱伝達率はインパーソン冷却の熱伝達率の経験式として広く知られているFlorschuetz ら[2]の経験式により求めた。

4.2 冷却性能試験結果と考察

4.2.1 冷却効率

冷却性能試験により得られた冷却空気流量に対する冷却効率の変化を図5に示す。図5は横軸は式2から式4により算出した冷却側有効伝熱面積による予測値も合わせて示している。Re₉ = 3.5×10⁴では、ピン密度増加による冷却効率の向上が明らかであり、実際の設計で利用されると考えられる冷却空気流量範囲W₈/W₉＜0.08において、基本型、微細型とも試験結果は予測値と良く一致していてた。しかし Re₉ = 7.0×10⁴では、基本型は従来型に比較して明らかに冷却効率の向上を示し予測値
ともよく一致しているものの、微細型は基本型に対してわずかな向上しか示さず、予測値ほどの冷却効率が得られなかった。微細型の冷却性能を精度良く予測するためには予測方法の改良が必要であることが明らかになった。

4.2.2 CFD 換用冷却性能予測方法

式2から式4による冷却効率有効伝熱面積の算出方法は、ターゲット面の平均熱伝達率とピン表面の平均熱伝達率が等しいと仮定している。予測誤差原因となるこの仮定を排除し、ターゲット面とピン表面を個別に取り扱いのおのおの経験式 [2] や理論式で求められる熱伝達率とフィン効率を修正するファクターを導入した。より一般的な予測方法を考察した。この予測方法では冷却側有効伝熱面積は以下のようになる。

\[A_{\text{eff}} \text{new} = F_t (A_{\text{e,0}} - N_p a_p) + F_p F_\phi \text{new} N_p S_p Z \]

（式5）

この方法では、冷却特性のわからない新規冷却構造に対して \(F_t, F_p, \phi_\text{N} \) をいかにして求めるかが問題となる。そこで新規冷却構造と、\(F_t, F_p, \phi_\text{N} \) が1の場合に試験結果と予測値が一致することができる試験により確認されている基準冷却構造に対して CFD 解析を実施し、両者を相対比較することでファクターを算出する方法を考察した。CFD 解析結果からターゲット面の平均熱伝達率、ピン表面の平均熱伝達率、フィン効率を求め、\(F_t, F_p, \phi_\text{N} \) を以下のように算出する。

\[F_t = \frac{h_{\text{e,N}} \text{num}}{h_{\text{e,N}} \text{cor}}, \quad F_p = \frac{h_{\text{e,p,N}} \text{num}}{h_{\text{e,p,N}} \text{cor}}, \quad \phi_\text{N} = \frac{\phi_N \text{num}}{\phi_N \text{cor}} \]

（式6）

式6の分母は、基準冷却構造の CFD 解析値と経験式・理論式で算出される値の比で、CFD 解析誤差を補正するものである。本方法は、ピン配置やピン密度が異なる新規冷却構造の伝熱特性の基準冷却構造の変化を CFD 解析で予測することを特徴とする、汎用的な複合型インピジン冷却構造の冷却性能予測方法である。この予測方法を CFD 換用冷却性能予測方法と呼ぶ。

4.2.3 CFD 換用冷却性能予測方法の検証

基準冷却構造を基本型冷却構造とし、微細型の試験結果を CFD 換用冷却性能予測方法を検証する。基本型、微細型の CFD 解析から得られた熱流束分布を図6に示す。図6から、微細型ではピンが邪魔になりインピジン孔位置のターゲット面に現れている高い熱流束域が基本型に比べて狭くなっていている様子が見て取れる。微細型について算出した \(F_t, F_p, \phi_\text{N} \) を図7に示す。微細型では \(F_t \) が1より小さくなっており、図6から予測されたよりもターゲット面の平均熱伝達率が小さくなっていることが定量的に確認された。ピン表面での伝熱特性については、冷却空気流量が多くなると \(F_p \) が
図6 複合型インピジング冷却構造内部の熱流束分布（CFD解析結果）

図7 微細タイプについて算出された係数

図8 CFD援用冷却性能予測方法検証結果

5.疲労試験

複合型インピジング構造ではピンの付け根への応力集中が懸念される。複合型インピジング冷却構造
と従来型冷却構造の疲労強度を比較評価する目的で疲労試験を実施した。試験に用いた試験片を図9に示す。試験は常温での荷重制御試片振り曲げで実施した。評価サイクルは1×10⁷とし、1×10⁶毎に亀裂が確認されるまで付加荷重を順次上げていくステップアップ法で実施した。試験結果を図10に示す。クラックが確認された荷重レベルは複合型インピジュ冷却構造試験片と従来型試験片ではほぼ同じで、疲労強度が同レベルであることが確認された。クラック発生位置はいずれも冷却孔周りであり、ビン周りの応力集中は問題ないことが確認された。

6.まとめ
(1) 複合型インピジュ冷却構造ではビン密度を高くするとターゲット面の高周波回帰が阻害され、かつビン表面でのフィン効率も下がるために実表面積の拡大率から期待されるほど有効伝熱面積は拡大されない。
(2) 複合型インピジュ冷却構造の冷却性能予測方法として、ターゲット面とビン表面の平均熱伝達率およびビンのフィン効率予測でCFD解析結果を利用してCFD技術冷却性能予測方法を考案し、試験結果との比較により精度よく冷却性能を予測できることを確認した。
(3) 複合型インピジュ冷却構造に対して疲労試験を実施し、従来型冷却構造と疲労強度が変わらないことを確認した。

謝辞
本研究は、経済産業省・産業技術環境局・産業研究開発課の新規産業創出型産業科学技術研究開発制度による「環境適応型次世代超音速推進システムの研究開発」の一環として、新エネルギー・産業技術総合開発機構(NEDO)から委託を受けて実施したものであり、本研究の実施に当たり、ご指導とご協力をいただいたNEDOおよび多くの関係各位のご厚意に対し、深く感謝の意を表します。

参考文献
低レイノルズ数領域における高性能圧縮機翼列の空力設計コンセプト

*面田隆隆 (株) 本田技術研究所
有馬敏幸 (株) 本田技術研究所

1. 緒言

低レイノルズ数状態では、一般的に翼列の性能が低下することはよく知られており、特に圧縮機翼列の場合、その臨界 Re 数はターピン翼列に比べ高く、設計上の配慮が必要となる。しかしながら、著者らの知る限りにおいては、低 Re 数状態での境界層の挙動を実験的かつ数値的両面から研究した報告は少なく、流れのメカニズムも判然としていないのが実情である。特に高攣音流速入/高軸負荷の圧縮機翼列による低 Re 数領域 (200000 以下) での報告は皆無であり、従って、現在、このような条件における境界層制御に関する空力設計コンセプトの創出を最終目標として研究を進めている。ここでは、研究目的として進めているビジネスジェット機用ターボファンエンジンの高負荷低圧ターピンに採用されている出口案内翼 (OGV) の平均径位置の翼断面形状に焦点を当て、その低 Re 数領域での性能向上を目的として最適化を行った。最適化手法として、広域かつ確率的探索手法である二種類の進化的アルゴリズム (ES&MOGA) を適用し、特に MOGA では目的関数間のトレードオフが可能となる。最適化により得られた二つの翼と従来設計法によるベース翼 (BASE) の翼列性能実証試験を実施したところ、最適化翼の優位性が確認され、さらに二つの最適化翼は翼形状 (翼面負荷分布) がお互いに大きく異なるにもかかわらず圧力損失は同一レベルであるという興味深い結果が得られた。このことは、共通の設計コンセプトの存在を示唆しており、ここではその翼型設計コンセプトについて考察する。

2. 方法

最適化対象翼と空力特性： 最適化の対象となった出口案内翼：OGV の形状を図 1 に示す。空力設計は、CDA 想定に基づき高 Re 数 (8.7x10^4) 条件で行われ、流入マッハ数：0.6、軸向圧：43 度、Df：0.53 のいわゆる高負荷圧縮機翼列である。図 2 は最適化対象翼 (以後 OGV-BASE と称す) の Re 数特性を示す。実験と CFD (遷移モデルなし; Chien 低 k-ε) と比較あり、低 Re 数域で損失が増大し、臨界 Re 数は約 2x10^4 であることがわかる。従って低 Re 数領域での低損失化のための新設計概念を構築するために、最適化設計で対象とした Re 数は臨界 Re 数以下となる 1.3x10^5 であり、また最適化では上記遷移モデルなしのフローソルバーを使用した。主流の乱れは実験・CFD とも 0.6% である。

Fig. 1 Cascade parameter; Min= 0.60, Df= 0.53

Fig. 2 Reynolds number characteristics
最適化設計システム：最適化設計フローを図3に示す。
最適化手法としては、進化的アルゴリズムに属する確率的探索手法であるESとMOGAの二種類を使用した。
ESでは“損失最小”のみを目的関数とし、MOGAでは“損失最小”と“作動動レージ”の二つを目的関数とした。
両者の翼形状表現方法や拘束条件は、それぞれの最適化手法によるユニークな解を期待したため、同一ではない。
最適化では、計算時間短縮のため、遷移モデルなしのナビエ・ストークス（Chien低ReK/k）を使用し、
得られた最適化翼に対する空力特性解析は、遷移モデル（修正AGSモデル）を組み込んだk/ω乱流モデルで
行われた。性能実験試験はドイツDLRの二次元翼列
風洞で実施した。

3 結果及び考察

最適化翼形状：最適化で得られた二つの翼（OGV-ES & OGV-MOGA）の翼形状を図4に示す。ES翼は中
央に最大厚みを持ついわゆる“ブラミング”型であり、MOGAは翼後半に空力負荷が移動したように見
え、いずれにしても二つの最適化翼の形状は大きく異なっている。

![Airfoil geometries of baseline and two optimized ones](image)

全体性能：図5は、実験的に得られたそれぞれの翼のインシデンス特性に及ぼすRe数の影響を示す。
BASE翼で見られた低Re数領域（<2.0×10^5）での急激な損失増加は、最適化翼では見られず、また低
Re数（1.3×10^5）で最適化したにもかかわらず高Re数領域まで低損失を維持している。特にMOGAはRe
数変化に対してサージ側での変化が小さい。

![Influence of Reynolds number on loss-incidence characteristics](image)
BASE 範囲一境界層特性： 図6はBASE 翼の翼面（負圧面）境界層特性に及ぼすレイノルズ数の影響を示す。境界層特性解析で使用したCFD ソルバーは、修正AGS 遷移モデルをk-ω乱流モデルに組み込んだものである。BASE 翼は、すでに述べたように CDA 思想に基づき高Re 数（8.7×10⁵）条件で設計されたものであり、その翼面マッハ数分布は約 20％コード位置で最大マッハ数をもつ、いわゆるピケジャンプの分布を示し、実験と CFD が良く一致していることがわかる。さらに低レイノルズ数領域でもマッハ数分布は CFD と実験とで良く一致しており、従って CFD から得られる境界層パラメタに基づき境界層特性を議論することは価値がある。高Re 数領域では LE 近傍での小さな剥離を除けば、全コードにわたって剥離はなく、境界層は乱流と推察される（形状係数：H₉=2.0）。これに対して臨界Re 数（=2.0×10⁵）では、ショートパブルが 40%コード付近で発生し、運動量厚さ：δ₂が大きくなり、さらに臨界Re 数以下（1.0×10⁵）では上記パブルはパースト傾向を示しており、損失著しく増大することがわかる。BASE 翼の低Re 数領域では、もはや遷移は起こらず、層流剥離している。

Fig. 6 Effect of Reynolds number on suction side boundary layer for OGV-BASE
最適化翼境界層特性：低Re数（Re=1.0-1.3×10^5）状態における3つの翼の境界層特性の比較を図7に示す。BASE翼では前述したように層流剥離（パブルバースト）の状態であり、境界層遷移は生じていない。これに対して最適化翼ESでは、翼LE部からの連続的な減速により翼コード17％付近にバブルが発生し、その後バブル後方で境界層は移動し（H₆=2.0）、従ってその下流においては大きな剥離はない。最適化翼MOGAでは、多目的最適化をおこなったために、LE部のピークマッハ数はESより低い。このためLE部にESで見られたような集中したバブルは存在せず、翼コード45％付近で集中したバブルが見られ、その直後に境界層は移動している（H₆=2.0）。以上のことより、低Re数での翼型設計ポイントは、如何に境界層遷移を促進するかという常識的なことではあるが、その手段としてES翼に見られたようにLE部から連続的な減速領域を形成することは、従来のCDAの思想では実現は困難となるユニークな概念である。一方、LE部から連続的な減速領域を形成することは、高Reでの性能劣化が懸念されるが、すでに図5で示したように、低損失（損失係数：約2％）を維持している。

Fig.7 Comparison of boundary layer property for three airfoils at low Reynolds number, Re=1.0-1.3×10^5
実験曲面の影響：上述した結果は、実験・計算とも低乱（0.6％）の状態で行われた。従って実機を想定した場合、主流乱れの及ぼす影響を把握することは重要である。しかししながら、実機LPT出口の巡航時（低Re数状態）での乱れレベルが判然としないし、またOGVは非定常的にローターWAKEを受けている。従って、ここでは一致の流入乱れを想定し、その相対値を5％とし、数値的にその影響を調べた。図9に示すように、遷移が見られなかったBASEでその効果が大きく、損失は大きく改善し（損失6.94％→4.82％）、逆に前半部で遷移が見られたESについてはその影響は小さい（損失3.89％→3.648％）。

Fig. 9 Predicted free-stream turbulence effect on boundary layer property, Re=1.0-1.3x10^6
Table 1 Loss reduction rate at low Reynolds number

<table>
<thead>
<tr>
<th></th>
<th>Loss reduction rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CFD</td>
</tr>
<tr>
<td>Tu (%)</td>
<td>0.6</td>
</tr>
<tr>
<td>OGV-BASE</td>
<td>---</td>
</tr>
<tr>
<td>OGV-ES</td>
<td>44%</td>
</tr>
<tr>
<td>OGV-MOGA</td>
<td>44%</td>
</tr>
</tbody>
</table>

4. 結論

進化的アルゴリズムに属する二つの確率的最適化手法（ES及びMOGA）とCFDソルバー（Chienの低Re数κ－ω乱流モデル）の組み合わせにより、高軸向圧縮機翼列の最適化を低Re数条件で行い、さらに得られた最適化翼の空力特性を、修正AGS遷移モデルをκ－ω乱流モデルに組み込んだCFDにより解析し、その空力特性実証実験を実施した。その結果、下記の知見が得られた。

1. 低Re数での性能劣化要因は、層流剥離（パルプバースト）であることが、数値的な実験的に得られた。
2. 層流剥離を抑制するためには、遷移を促進することが不可欠であるが、従来の翼型設計で採用してきたCDA思想では困難である。
3. LE部から連続的に減速を伴う速度分布（極端なフロントローディング）に遷移に有効であり、高Re数側で懸念された剥離の発生は見られなかった。
4. 低Re数状態で形成されるバブル付近の翼面曲率は緩和し、バブルサイズの最小化を図るべきである。

参考文献

1000°C級遠心型タービン羽根車の設計検討

*柴木 学 百々 聡 中野 晋
関原 優 山口 和幸（株、日立製作所）

1. まえがき
欧米各国では新規基幹電源開発や基幹送電線拡充への投資が抑制される傾向にある。また、我が国では都市部の電力需要増加に伴うピーク負荷の増大に対応するため、基幹電源のバックアップ電源が検討されている。これらに呼応する規制緩和と相まって、中・小規模の分散電源開発が盛んになってい

分散電源の中でも数十から数百 kW の小型ガスタービンは、特にマイクロタービンと呼ばれ、量産化によるコスト低減が期待でき、大きな注目を集めている。マイクロタービンは、欧米各国や我が国において既に数社が商品化しており、容量の多様化や効率向上を目指した開発競争が激化している。
かかる背景から 1000°C級の小型ガスタービンの開発を目的として、遠心型タービンの設計検討を行った。本報では、この遠心型タービンの羽根車に関して、空力性能、強度および振動の主要な評価結果について報告する。

2. 目標仕様
表 1 に今回設計検討した遠心型タービンの主要目標仕様を示し、図 1 に遠心型タービン羽根車の外観を示す。開発の基本方針として、性能向上とコスト低減を両立させるため、無冷却条件下で可能なかぎり高温化するとともに、高出力・高比速度化を図った。

表 1 近心型タービンの目標仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>入口全温度</td>
<td>960 ℃</td>
</tr>
<tr>
<td>定格回転数</td>
<td>51000 rpm</td>
</tr>
<tr>
<td>出力</td>
<td>400 kW</td>
</tr>
<tr>
<td>圧力比</td>
<td>3.6</td>
</tr>
</tbody>
</table>

図 1 遠心型タービン羽根車

3. 空力性能
図 2 に準 3 次元の非粘性流体解析により得られた羽根車の相対マッハ数分布を示す。図 2 において、翼間中央の相対マッハ数分布が流量の大部分を占める主流が流れる部分になるため、翼腹側および背側で比較して羽根車の空力性能に大きく影響する。したがって、空力設計では翼間中央の相対マッハ数分布に着目し、相対マッハ数が減少する減速流となる領域が存在しないよう留意した。特に翼の中央部から後縁線にかけて境界層の発達を抑制するため、一定の割合で相対マッハ数が増加する加速流が得られるよう翼形状を設計した。
翼形状は、子午面形状、翼角度分布および翼厚分布を与えることにより作成したが、翼負荷分布に対する感度は、翼厚分布と比較して子午面形状および翼角度分布の方がより大きい。翼厚分布の翼負
荷分布に対する感度が小さい理由として、流路断面に対する翼厚の占める割合が小さく、流れに対する翼厚によるブロック損失が小さいためと考えられる。

図3に3次元の粘性流体解析により得られた翼間中央の相対マッハ分布を示す。図3からわかるように、翼先端側の中央から後縁にかけての流れが半径方向内向きから軸方向へ転向する付近で、局所的ではあるが減速領域が存在する。これは、翼先端とケーシングとの間隙を通過する二次流れによるものと考えられ、翼先端間隙を詰めることが抑えることができると予想される1)。

羽根車の3次元の設計検討過程において、翼先端側の中央から後縁にかけて軸方向と平行な直線部を設けなかった場合、図4の流速ベクトル分布に示すように、特に翼後縁部先端側出口において流速ベクトルに半径方向内向き成分が残り、軸方向と平行な流れと混合することによるミキシングロスを発生させることができる。そこで、図5の流速ベクトル分布に示すように、翼先端側の中央から後縁にかけて軸方向と平行な直線部を設けることとした。この直線部を設けたことにより、図5に示すように翼後縁部先端側出口における流速ベクトルの半径方向内向き成分はほとんど取除かれ、軸方向とほぼ平行な流れを得ることができた。
4. 強度評価

ターピン入口温度が960℃と高温であるうえ、無冷却でしかも羽根車外径における周速も大きくしたため、羽根車の材料としては高温クリープ強度が大きく、大型ガスターピンのターピン動翼にも使用されているニッケル基合金を選定し、強度評価を行った。

図6に羽根車の腹側における応力分布を示す。図6に示した応力は、遠心力のほか、熱応力およびガス圧力力を考慮して求め、最大応力σmaxにて規格化したものである。図6からわかるようにσmaxは翼後縁部根元に発生している。これは、回転軸周りのモーメントアームに相当する軸に対して垂直な翼高さが翼後縁部において最大となり、遠心力による回転軸周りのモーメントが最大となるためと考えられる。なお、σmaxは材料の許容強度に対して十分小さいことは確認済みである。

5. 振動評価

図7に羽根車のキャンベル線図を示す。振動評価で共振を回避したのは1次モードの固有振動数であり、回転数比4以下の固有振動数と共振する回転数が運転範囲から外れるよう設計した。固有振動数はおもに翼厚分布を変更することで増減させた。

6. まとめ

今回設計検討した遠心型ターピンは運転回転数範囲が広いため共振回避が困難であったが、空力性能、強度および振動の成立点を見出すことができた。現在実験を計画中であり、計測データとの比較検討により、更なる空力性能向上の可能性を追求していきたい。

最後に、本研究は平成14年度NEDOエネルギー使用合理化技術実用化開発事業の支援に基づいて実施したものであり、ご支援に感謝したい。

図6 羽根車の腹側における応力分布
図7 羽根車のキャンベル線図

参考文献
(3) 土屋直木, 吉見晴夫, 生産研究, 50 巻, 11 号 (1998), PP. 352－355
単動翼列多段チップタービン駆動ファン

*岩瀬 謙、斎藤喜夫、松田幸雄（航空宇宙技術研究所）

1. 緒 説

航空宇宙技術研究所では、これまで検討を進めてきたコア分離型ターボファン・エンジンの概念を基に、小型航空機用のクラスターファン・エンジンを考案した。クラスターファン・エンジンとは中大型機用のコア分離型ターボファン・エンジンのファン部から燃焼機を省略して小型化し、ファンを空気タービンで駆動する方式に変更したものである。クラスターファン・エンジンは非常に小型のターボファン・エンジンでありながら10以上の高バイパス比化が可能であり、複数の小型ファンを束ねる（クラスタ化する）ことで必要な推力を得るエンジンシステムとして、小型飛行機など小型航空機への搭載を想定している。小型ファンの駆動方法としては、タービンと減速ギアを組み合わせた一般的なギヤード方式も利用可能だが、筆者らは新たに単動翼列多段チップタービン方式を考案した。単動翼列多段チップタービン方式は、動翼の周方向に変化するという点において通常のチップタービン方式とは大きく異なっており、単翼列でも大きな膨張比をとることが可能となる。本報告では、この新駆動方式である単動翼列多段チップタービンを採用したファンの試作試験について述べる。

2. クラスターファン・エンジン

2.1 エンジン構成

図1にクラスターファン・エンジンの基本的な構成を示す。複数のコア・エンジンに、複数の空気タービン動翼ファンを束ねたクラスターファン及び高圧空気ダクトで構成されている。コア・エンジンはファン動翼用の高圧空気源であり、図2に示すように1段の遠心圧縮機、燃焼機、及びタービンで構成されている。遠心圧縮機で圧縮された空気はその約40%がファン動翼用に大量抽吸される。クラスターファンはこのエンジンの推進装置であり、コア・エンジンから供給される高圧空気が使用して駆動される。ファン部は大量生産が可能なように、空力を完成可能な範囲で小型化し、必要な推力はファンの基数で調節する。

2.2 クラスターファン・エンジンの特徴

クラスターファン・エンジンは、コア分離型エンジン方式を基にしていることから、小型エンジンでありながら超高バイパス比化が容易なことや高い作動安定性、そして高いエンジン配置自由度などの特徴を有している。また、機構の簡素化を推し進めるることにより高い安全性及び大量生産に

図1 クラスターファン・エンジン

図2 カラコ・エンジン
よる大幅なコスト削減が実現可能である。一方、短所としては多数の高圧空気ダクトが必要なこと及び従来型のエンジンよりも熱効率が低下することが挙げられるが、コア・エンジンの圧力比を単段遠心圧縮機で実現可能な程度に設定することで、ダクトに関する技術的問題の多くは解決し、熱効率の低下は超高速バパス比化で補うことが可能である。

3. 単動翼列多段チップタービン駆動ファン試作実験

単動翼列多段チップタービン方式はギャード方式に比べ機構の単純化など多くの利点を有しているが、全く新しい駆動方式であるため、特性や効率など多くの点が明らかになっていない。そこで、単動翼列多段チップタービン方式を適用したファンの試作を行い、今後の改良型ファン設計のための基礎的なデータを目的として実験を行った。

3.1 単動翼列多段チップタービン

図4に単動翼列多段チップタービン駆動ファンのタービン流路の概略図を、図5に試作したファンを示す。タービン駆動用の高圧空気はケーシングに設けられた二箇所の空気導入孔から流入し、一段目タービンで膨張した後、流れは二つに分けられ、動翼列と隔壁で隔てられた戻り流路を経て二段目タービンへ導かれる。二段目において空気は再び膨張し、さらによう一度戻り流路を経て三段目へ流入した後、ノズルから排気される。従って単動翼列多段タービンにおいて動翼列は各段に関して共通となり、段と段の間に本タービン特有の戻り流路が存在する。二段目が複数存在するため、これ以降説明のために一段目のタービンに対して動翼回転方向に位置する二段目のタービン

<table>
<thead>
<tr>
<th>チップタービン駆動ファン主要設計仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>項 目</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>ファン直径</td>
</tr>
<tr>
<td>回転数</td>
</tr>
<tr>
<td>压力比</td>
</tr>
<tr>
<td>排気速度</td>
</tr>
<tr>
<td>流量</td>
</tr>
<tr>
<td>搀力</td>
</tr>
<tr>
<td>タービン</td>
</tr>
<tr>
<td>入口全圧</td>
</tr>
<tr>
<td>压力比</td>
</tr>
<tr>
<td>流量</td>
</tr>
</tbody>
</table>
を fwd タービン、その反対方向に位置する二段目タービンを rev タービンとする（図 4 参照）。表 1 に本チップタービン駆動ファンの主要設計仕様を示す。ファン直径は 260mm であり設計回転数において排気速度約 100m/s、推力は約 770N である。材質は中心軸、軸受け及びポルト類を除き純アルミ合金製であり、総重量は約 5kg、コア・エンジンを含まないファンのみの推力重歴比は約 15 となる。

3.2 実験装置・方法

図 6 に実験装置の概略図を示す。タービン駆動用の空気は出力 300kW の圧縮機により供給され、最終的に内径 12.7mm の 6 本のゴム製耐圧ホース通りチップタービンへ導かれる。空気供給の最大圧力は 0.81MPa、温度は常温である。供給空気流量の計測はオリフィス型流量計を用いて行なった。回転数はファン静翼に取り付けられたギャップセンサで計測し、チップタービンへ供給する空気流量をコントロールすることにより、回転数の制御を行った。空気流量の制御は PC 上から電動バルブを開閉することにより行う。ケーシングの振動は加速度計により計測した。また、タービン性能を算出するために、二段目までの各段前の空気温度と、温度計測と同様の位置に圧力孔を設けタービン前後の全圧を測定した。本研究では二段目タービンまでの計測を対象とした。空気の動翼流出角度などの計測は行わず基礎的なデータ取得のみを行った。図 4 に各センサ挿入位置を示す。

3.3 実験条件

これまでの予備的な実験[11]から、本タービンには設計値よりも流量が過多地流れること、及び 2 段目 fwd タービンと rev タービンの効率に偏りが生じていることが明らかとなっている。そのため各段へ流れる流量を調整するために、それぞれの段のタービンノズル翼間を狭くすることにより流量の調整を行った。表 2 に実験条件を示す。表中の数値は各段のノズル面積を示しており、2 段目ノズル面積については fwd タービン、rev タービン別個に記し、次に 2 段目総面積を記している。CASE A は全く断面積を調整していない状態であり、1 段目ノズル面積に関しては 3 パターン、2 段目に関しては CASE C～F でノズル面積を変化させて実験を行った。3 段目ノズル面積は CASE A を除き一律としている。また、実験は回転数が 1000r.p.m～8000r.p.m の範囲（設計回転数の修正値に対して約 10%～80%）で行った。
表 2 各段のノズル面積（単位：cm²）

<table>
<thead>
<tr>
<th>CASE</th>
<th>1段目</th>
<th>2段目(fwd)</th>
<th>2段目(rev)</th>
<th>2段目合計</th>
<th>3段目</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10.2</td>
<td>8.68</td>
<td>8.68</td>
<td>17.4</td>
<td>31.6</td>
</tr>
<tr>
<td>B</td>
<td>7.34</td>
<td>4.34</td>
<td>4.34</td>
<td>8.68</td>
<td>17.7</td>
</tr>
<tr>
<td>C</td>
<td>5.87</td>
<td>4.34</td>
<td>4.34</td>
<td>8.68</td>
<td>17.7</td>
</tr>
<tr>
<td>D</td>
<td>5.87</td>
<td>4.34</td>
<td>1.45</td>
<td>5.79</td>
<td>17.7</td>
</tr>
<tr>
<td>E</td>
<td>5.87</td>
<td>2.89</td>
<td>2.89</td>
<td>5.79</td>
<td>17.7</td>
</tr>
<tr>
<td>F</td>
<td>5.87</td>
<td>1.45</td>
<td>4.34</td>
<td>5.79</td>
<td>17.7</td>
</tr>
</tbody>
</table>

図 7 修正回転数と修正流量
図 8 修正回転数と 1 段目効率

4. 実験結果及び考察

図 7 は修正回転数と修正流量の関係を示している。ここで図中の θ 及び δ はそれぞれ、次式で定義される。タービン入口全温、全圧の標準状態全温(T₀ = 15℃)、全圧(P₀ = 101.3kPa) に対する比である。

θ = \frac{T_1}{T_0}, \quad \delta = \frac{P_1}{P_0} \tag{1}

また、これ以降下付数字はタービン段を表し、des は設計値、そして F は 2 段目 fwd タービンを、R は 2 段目 rev タービンに関する物理量を表す。流量は 1 段目静翼ノズル面積に依存しており、本タービンが 1 段目静翼チョークであることがわかる。設計値にもっとも近いのは CASE C〜F であり、1 段目ノズル面積を半分程度塞いだ状態となっている。また、流量はほぼすべてのケースについて膨張比が 2.0 を越えた付近から一定に近づきつつあった。

図 8 は修正回転数と 1 段目効率の関係を示している。断熱効率は次に示す式で用いて算出した。

η₁ = \frac{1-\tau_r}{1-x(\nu-\nu)} \tag{2}

ここで、τ_r はタービン段前後の全温比を、ν は空気の比熱比を表している。効率は回転数の増加と共に増大し、最大で约 44%を示す。一段目ノズル面積が大きくなる程高い効率を示す傾向が見られるが、これはノズル翼間を塞いだことによる流路へのブロックージの影響が表れたものと考えられる。

二段目の効率（図 9 及び図 10）は fwd タービンと rev タービンで大きな差が生じている。fwd タービンと rev タービンのノズル面積比の効率への影響を調べるために、2 段目ノズル面積が等しい CASE D, E, F を比較すると、fwd タービンに関して実験を行った回転数範囲では CASE D の効率が最も高く、CASE F が最も低くなっている。CASE D は 2 段目 fwd ノズル面積が rev に比べて大きく、F は fwd タービンと rev タービンの面積が CASE D の反対の設定、そして E は fwd タービンと rev
図9 修正回転数と2段目fwdターピン効率
図10 修正回転数と2段目revターピン効率

ターピンの面積が等しい。このことから、fwdターピン流量が増すほど効率が高くなることがわかる。revターピンの効率(図10)は、ほとんどの実験条件において負値となり、実験を行った回転数範囲ではrevターピンが有効に機能せずに、ローターエンジンとして作用している可能性がある。先のCASE D, E, Fを比較した場合、CASE Fは設計回転数の50%付近から正値を示し3ケースの中で最も高い効率を示している。これ3ケースのrevターピン効率の関係はfwdターピンの場合の結果と反対の傾向を示しており、2段目ターピンの効率はfwdターピンとrevターピンへの流量分配率に大きく依存していることがわかる。また、2段目の条件が等しく1段目ノズル面積のみ異なるCASE BとCの場合、fwdターピンの効率はほぼ等しいが、revターピンに関しては回転数70%付近で両者は近い値をとるものの、他の回転数では比較的大きな効率差が生じている。CASE Bの方がCに比べて1段目ノズル面積が大きいため、チップターピンへの供給される流量が多く、よりrevターピンに多かった流量が流れたものと考えられる。

本ターピンは通常のターピンには存在しない戻り流路等、断熱効率を下げる要因があるため、1段目はターピン流量を決定することと効率を高くすることが重要となる。1段目に関しては、2段目のような複雑な流路は存在しないため、ターピン翼の性能が効率に最も影響するものと考えられる。2段目ターピンに関しては、実験したターピンではfwdターピンとrevターピンの面積を等しく設計しているにも関わらず、図9、10からfwdターピンの効率とrevターピンの効率には大きな差があり、1段目から流出する気体の2段目への分配が図面したとおりに行われていない。流量の分配には、ノズル面積のみならず気体の動翼流出角度や戻り流路の流動形状などが大きく影響しているものと考えられ、効率改善のためにはこれらを最適化する必要がある。これらは二次試作品以降の課題である。

本実験結果から特に2段目の効率を上げることを目的として、各段のノズル面積を調整しCASE Gとして実験を行った。表3に実験条件を示す。CASE Gは流量を設計値に近づけるため、1段目ノズル面積を小さくし、fwdターピンの効率を落とすことなくrevターピンの効率向上を図るために、fwdターピンとrevターピンの面積比を4:3としている。図11及び12に計測の結果得られた修正回転数と2段目ターピン効率の関係を示す。比較のためにCASE DとFの結果も併せて示した。2段目fwdターピン効率は本実験条件の中でも2番目~3番目高い値を示し(回転数によって異なる),revターピン効率に関しては負値であるものの、より高い回転数において正値を示す傾向が見られる。単動翼列多段チップターピン方式は、fwdターピンとrevターピンのノズル面積比を適切な
表 3 各段のノズル面積 (単位: cm²)

<table>
<thead>
<tr>
<th>G</th>
<th>1段目</th>
<th>2段目 (fwd)</th>
<th>2段目 (rev)</th>
<th>2段目 (合計)</th>
<th>3段目</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.40</td>
<td>5.79</td>
<td>4.34</td>
<td>10.1</td>
<td>17.7</td>
<td></td>
</tr>
</tbody>
</table>

図11 修正回転数と2段目 fwd タービン効率

図12 修正回転数と2段目 rev タービン効率

値に設定することで fwd タービン効率を大きく落とすことなく、rev タービンの効率を改善可能なことがわかる。

5. まとめ

チップタービンの駆動方法として、単動翼列多段チップタービン方式を取り入れたファンを試作し、タービンノズル面積を変化させて実験を行った。その結果、2段目タービンの効率は fwd タービンノズル面積と rev タービンノズル面積の比、すなわち流量分配率に大きく依存していることが明らかとなった。単動翼列多段チップタービンの効率向上のためには fwd タービンと rev タービンの流量比率を適切に設定することが必要である。

今回試験を行ったファンは単動翼列多段チップタービン駆動方式の実証を目的としていたため、タービンの効率等には特に配慮していない。現状、タービンの効率改善、流れ流路の最適化及びタービンノズル面積を調整した二次試作品の製作に入っている。二次試作品は、一次試作品に対して1) タービン効率の向上、2) 重量の低減、3) 流れ流路の隔壁形状の改善を図ったファンであり、1) に関してはタービン翼形状の変更と共に今回の実験結果に基づいて 2段目 fwd タービン面積を rev タービンよりも大きくしている。2) の重量に関しては現在の 5kg から 1kg 程度の軽量化を見込んでいる。今後、改良型ファンの試験結果についても逐次報告していく予定である。

参考文献
超小型遠心圧縮機の要素試作と実験

*平野 利幸 (法政大院) 山口 直樹 (キャノン) 御法川 学 (法政大)
辻田 星歩 (法政大) 水木 新平 (法政大)

1. はじめに
近年、電力用の分散型エネルギー源などにはじまり、モバイル電源や超小型航空機用を目指したガスタービンの小型化に対する研究や試作が盛んに試みられている。しかし、その設計手法や製造技術は、未だ確立されていないところが多い。
本研究では、超小型ガスタービン用遠心圧縮機の設計指針を確立することを最終目標に、その10倍サイズの遠心圧縮機を設計、製作した。羽根車の設計にはMichael R.Galvaの性能予測と2を用い、超小型化を視野に入れた2次元形状の流路を有する羽根車およびディフューザの最適形状を検討した。試作した遠心圧縮機の実験は、コールドエアによる試験が可能な回転数N=110,000rpmまで行い、得られた性能特性を予測結果と比較した。また、設計回転数 N=220,000rpmで使用したときの羽根車にかかる応力および振動の影響を調べるため、試作した羽根車形状に対してFEM解析を行った。

2. 設計
本研究では超小型化の第一段階として、最終寸法(D1=4mm)の10倍モデル(D1=40mm)を対象に設計を行った。なお、この大きさは小型自動車用ターボチャージャと同程度であり、既存の機械加工によって3次元形状の流路が十分に作り出しうる程度まで小型化しても機械加工によって対応出来ると考えられる。ここでは、はるかに小型化された場合やシリコンウエハー上でMEMSを応用した大量生産を行うことを視野に入れ、2次元形状の流路を選択した。したがって、一般的な3次元形状の羽根車に対して大幅な性能低下が予測される。しかしながら、このような2次元形状の超小型遠心圧縮機に関する設計指針はほとんど存在しないため、新たな知見を得ることが必要と考えられる。

2.1 性能予測および設計
設計はMichael R. Galvaの性能予測法によって特性曲線を求め、各部の最適寸法を見出した。ここでは、エンジンの衝撃損失、壁面摩擦損失、内流損失、混合損失、円盤摩擦損失およびディフューザでのブロックージと圧力回復率などを考慮し、すべり係数にはWiesnerの式を用いた。羽根車およびディフューザの入口と出口の全圧力、静圧力、相対速度、絶対速度および流れ角、温度などを設定して性能特性を計算し、最適な幾何学的形状を定めた。最終的な羽根車およびディフューザの設計図を図1に、仕様を表1に示す。なお、設計における主な留意点を列記すると下記のようになる。
(1)羽根車入口直径を大きくすることは、守秘緩衝流が量を増加させること解った。しかし、径を大きくすると羽根車出口の速度三角形で流れ角が増し、絶対速度が周方向に小回りをしない。圧力比が上がらない。
(2)羽根車出口の速度三角形を観察した時、絶対速度を周方向に定めると圧力比が上がるが、そのため絶対速度は増加して損失を増大する。逆に、絶対速度を半径方向に定めると、出口相対速度が周方向に定めてしまい、羽根の遠心力に対する強度は低下する。以上の点を考慮して、出口後退角を30°とした。
(3) 羽根車の羽根枚数を増やすと圧力比があがるが、枚数を増やしすぎると流路が狭くなる。そのためチョークを起こしやすくなり、最大作動流量が小さくなる。圧力比、作動流量の 2 つの観点から羽根枚数は 16 枚とした。

(4) ディフューザ流路を長くすると摩擦損失が増加するため、小型化の実現に向けてショートディフューザを採用した。

(5) ディフューザ閉き角には、効率、損失の面で流れが最も安定する 10° を目安に設定した。また、その時のインシデンスを±5° 程度にした。

![Fig.1 Impeller and diffuser](image)

2.2 実験装置の製作

この羽根車の駆動には軽自動車用のターボチャージャを利用して、圧縮機部分、即ち、羽根車、ディフューザおよび吸い込みペルマスを含むケーシングだけを設計、製作した。羽根車およびディフューザの流路加工は 3 軸加工可能なマシニングセンタを用いて行った。羽根車の材料には A7075 を使用した。設計時には羽根厚さがスパン方向に一定で 0.5mm とされたが、回転時の強度を考慮し、根元部の羽根厚さを 1.0mm としてテーパ状に仕上げた。また、リーディングエッジでは流れの方向が急激に変わるため、シュラウド側からハブ側にかけて角度を付けた。ディフューザは真鍮製で、羽根なしのものと、羽根枚数が 15 枚、16 枚の二種類を用意し、シュラウド側より流路に固定した。なお、ケーシング壁面とシュラウドとの隙間は 0.3mm である。図 2 に試作した羽根軸およびディフューザの写真を示す。

![Fig.2 Tested impeller and diffuser](image)

<table>
<thead>
<tr>
<th>Table 1 The main dimensions of impeller and diffuser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impeller</td>
</tr>
<tr>
<td>Inlet diameter [mm]</td>
</tr>
<tr>
<td>Exit diameter [mm]</td>
</tr>
<tr>
<td>Number of blades</td>
</tr>
<tr>
<td>Thickness of blades [mm]</td>
</tr>
<tr>
<td>Inlet blade height [mm]</td>
</tr>
<tr>
<td>Exit blade height [mm]</td>
</tr>
<tr>
<td>Inlet blade angle [°]</td>
</tr>
<tr>
<td>Exit blade angle [°]</td>
</tr>
<tr>
<td>Diffuser</td>
</tr>
<tr>
<td>Inlet diameter [mm]</td>
</tr>
<tr>
<td>Exit diameter [mm]</td>
</tr>
<tr>
<td>Number of blades</td>
</tr>
<tr>
<td>Thickness of blades [mm]</td>
</tr>
</tbody>
</table>
3. 実験装置および実験方法

本研究に使用した実験装置図および圧縮機全体の写真を図3に示す。圧縮機の駆動は、吐出し圧力0.69MPa、流量3.5m³/minのスクリューコンプレッサを空気源として用い、圧縮機の同軸上にあるタービンで行った。圧縮機の作動流体（空気）は、圧縮機ケーシングの吸込みノズルより流入し、圧縮機を通過した後、流量測定用オリフィスを有する吐出し管を経て、絞り弁より大気に放出される。羽根車出口温度とディフューザ出口温度は熱伝導を用いて計測し、羽根車出口静圧、ディフューザ出口静圧、および圧縮機出口より下流270mmの位置での出口静圧は圧力変換器によりそれぞれ測定した。また、流量は、圧縮機出口より下流880mmの位置に設置したコーナータップ型オリフィスの差圧を用いて求めた。回転数はN=80,000rpm~110,000rpmで10,000rpm刻みで設定した。性能特性は、絞り弁を全開から全閉まで開じてゆき、段階的に設定した流量において測定した。　

4. 実験結果および考察

図4は圧縮機下流270mmにおける羽根付き（羽根枚数15枚）ディフューザの全圧(△p)を、回転数で比較したものである。図の横軸は質量流量であり、縦軸は全圧力比である。各回転数とも、最高圧力比流量より低流量側では、サージングに入っており、測定値にパラツキが生じた。回転数が上がるにつれて、低流量域における右上がりの傾きが大きくなるが、N=110,000rpmでは全圧力比1.65を得ることができた。

図5は110,000rpmおよび100,000rpmにおける全圧を、3種類のディフューザ形状で比較したものである。羽根付きディフューザは羽根なしディフューザと比べて、作動範囲は狭い一方、最大全圧力比は若干ではあるが高い値を示している。また、羽根付きディフューザにおいては、羽根枚数15枚と16枚では全流量域ではほとんど変わらない結果となっている。しかし、効率的な圧力回収率が得られる流路面積比と流れの脈動を避けるため、羽根枚数と倍数関係にならないように設計した羽根枚数15枚のディフューザの方が、設計回転数220,000rpmでは効果的であると推察される。

図6はN=110,000rpmにおける羽根車出口静圧とディフューザ出口静圧(△p)について、実験結果と性能予測結果を比較したものである。ここでは、(a)羽根付きディフューザ(羽根枚数15枚)と(b)羽根なしディフューザの場合について示した。羽根車出口静圧に関しては、大流量側では多少の差があるが、それ以外の流量では実験結果と性能予測結果がほぼ一致した傾向となった。これは、性能予測における羽根車の各損失の見積もりが実験結果に対して妥当であるためと考えられる。しかし、ディフューザに関しては、(a)では最高圧力点付近以外での相違が大きく、(b)では全流量範囲全体において値が異なり、正確に予測することができなかった。これは、ディフューザの圧力回収率を喉部分ブロックージと流路開き角のみでの簡易的に求めているためと考えられる。しかし(b)の比較では、実験と予測値の傾向が似ていることから、小型化による羽根なしディフューザ損失はより大きく見積もられたことが理解できる。
上のことから、圧力回復率を実験結果に合うように適切に設定することができれば、今回用いた性能予測法は有効であると推察する。

Fig.4 Non-dimensional total pressure (15 blades)

Fig.5 Non-dimensional total pressure (100,000 and 110,000rpm)

(a) 15 blades
(b) vaneless

Fig.6 Non-dimensional static pressure (110,000rpm)

5. 供試羽根車の応力解析

本研究で設計した羽根車は、2次元形状であるため羽根が葉板より垂直に立っており、遠心力によって羽根に生じる応力の影響が無視できない。また、羽根車の固有振動数に起因する危険速度についても未解明である。そこで、設計回転数における羽根車に生じる応力および振動モードの影響調べるため、NASTRANによるFEM解析を行った。まず供試羽根車3次元モデルを作成し、要素数約15万、節点数約25万の四面体要素FEMモデルを作成した。図7および図8にモデルを示す。

Fig.7 Solid model

Fig.8 FEM model
5.1 応力の計算結果

遠心力による応力解析においては、モデルの中心を拘束し、回転数 N=220,000 rpm の条件を与えた。また、材料特性としては製作した羽根車と同じ値を与えた。表 2 に A7075 の物性値、および機械的性質を示す。以上の条件でモデルの応力解析を行った結果、遠心力により花弁開花状に羽根車が変形し、N=220,000rpm での最大主応力値は A7075 の引張強度をはるかに上回る 1,187MPa であった。なお、このモデルには羽根付け根部にテーパー形状を与えていないため、実際よりも応力集中が大きく計算されていると考えられるが、羽根の根元に応力が集中する事は確かである。今後、このような応力集中を緩和できる効果的な形状を見つける事が課題である。

Table 2 Material property (A7075)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (kg/m³)</td>
<td>2.80 x 10³</td>
</tr>
<tr>
<td>Longitudinal elastic modulus [GPa]</td>
<td>71.7</td>
</tr>
<tr>
<td>Poisson’s ratio [-]</td>
<td>0.33</td>
</tr>
<tr>
<td>Tensile strength [MPa]</td>
<td>230 ~ 525</td>
</tr>
</tbody>
</table>

Fig.9 Stress contour and deformation mode due to centrifugal force

5.2 固有振動数の計算結果

次に羽根車の固有値解析を行った結果、f=8,800Hz 付近に、羽根車が回転軸に対して首を振るような 1 次および 2 次の固有モードが現れた。しかし、羽根車の設計回転数は f=3,666Hz (N=220,000rpm) 以下なので、これによる共振は無いと予想される。また、羽根入口部先端が花弁開花状に振動する 3 次の固有モードが f=10210Hz 以上で現れ、羽根の振動が現われることがわかった。図 10、図 11 および図 12 に、各固有振動数における等応力線図と振動モード形状を示す。

Fig.10 Stress contour and natural vibration mode (first order)
6. おわりに
超小型ガスタービン用の遠心圧縮機に関する設計指針を得るため、最終サイズの10倍モデルの遠心圧縮機を設計・製作し、性能特性を調べた。本研究で提案した2次元形状の羽根車の設計においては、Galvasの性能予測を用いて適切に損失を設定すれば、羽根車の性能予測が可能であることが明らかになった。ただし、ディフューザに関しては、さらに検討が必要である。また、実験結果から小型圧縮機においても羽根付きディフューザの有用性が明らかになったので、より効率で広範囲な作動が可能になるような設計指針を得る必要がある。さらに、供試羽根車の応力・振動解析を行った結果、2次元形状の羽根車では遠心力によって羽根先端部に過大な応力が生じ、また花弁開花状に羽根先端部先端が変形することがわかった。また、羽根車の固有振動数および振動モードも明らかとなった。以上の結果を踏まえて、羽根車形状の最適化を図っていきたい。

7. 参考文献
(1) 山口直樹他、超小型ガスタービン用遠心圧縮機の要素試作、日本機械学会、第8回動力・エネルギートピックシンポジウム講演論文集、P537-540、2002-6
3次元衝撃波／乱流境界層干渉場の受動バイパス
吹出し制御に関する研究

＊戸田和之（東京理科大学工学部機械工学科）
篠原洋平（東京理科大学大学院機械工学専攻）
山本 誠（東京理科大学工学部機械工学科）

1. 論　言
現在、物流における航空輸送や世界各都市への国際線直行化の需要が増加していることから、次世代超音速旅客機開発の推進が高まっている。しかしながら、航空機開発では、一国のどの開発投資におけるリスクの負担が不可能になり、国際共同開発が主流となっている。我が国においても、国際共同開発に参画すべく大型プロジェクトが進行中であり、推進システムの開発が進められている。一般に、超音速推進システムには、衝撃波を利用した超音速の空気流れを低音速に減速させるエアインテークが設置されている。しかしながら、インテーク内部では衝撃波と乱流境界層が干渉し、この干渉領域の発生がインテーク性能を低下させることが知られている。このため、干渉場の抑制が多くの研究者により試みられている。干渉場を抑制する方法には、動力を必要とする動力制御と、流体力特性を利用し流路形状などを工夫することによる受動制御がある。受動制御は付加的な動力装置を必要としないため、重量増加の抑制が可能であるという利点がある。
本研究では、インテーク内流れにおける3次元衝撃波／乱流境界層干渉の受動制御を扱う。後退衝撃波をまたがる形で壁面にバイパス流れを設けることにより、衝撃波により生じる圧力差を利用してバイパス流れを駆動する。干渉領域を挿入の壁面近傍にバイパス流れを吹出し、壁面を移動する低速流れに運動量を与え、同時に行い干渉領域を減衰させる方法を講じる。干渉領域の抑制効果はバイパス形状や設置位置により強く依存するため、検証には多くのケースを対象とする必要があり、実験的に達成するにはコスト面で困難である。そこで、我々は数値解析による検証を試みる。バイパス流れの予測に要する計算負荷を抑えるため、ファノ流れと摩擦損失の関係に基づくモデル化を導入する。実際に、2次元衝撃波反射問題における衝撃波／乱流境界層干渉を対象とし、モデル化の妥当性を検討する。次にこの結果を踏まえて、3次元干渉場計算にモデル化を適用することにより、受動バイパスによる干渉領域の制御効果を明らかにする。

2. 数値計算手法
支配方程式として、時間平均操作を施したNavier-Stokes方程式、連続の式、エネルギー式を用い、有限差分法による定常解を計算を行った。数値波動の抑制、衝撃波の適切な捕獲のため、対流項にYee-Harten(1)の2次精度風上型TVDスキームを、その他の項には2次精度中心差分を採用した。時間進行法にはJamesonらによるRunge-Kutta法を用い、局所時間刻み法を導入することにより効率的に収束解を導いた。塩原らによる三次元干渉場の検証結果に基づき、流体モデルにはBaldwin-Lomax(2)の代表モデルを導入した。また、バイパス入り口付近の複雑形状を表現するため、マルチブロック法を採用している。
2.1 バイパス流れのモデル化　バイパス内部を円断面一定の断熱流れと仮定し、ファノ流れ、及び全圧損失の関係を用いてモデル化を行った。バイパス流れは比較的低速と予想されるので、亜音速フ
アノ一流れの関係を適用することにより、パイパス内の流れには以下の関係が成り立つ。

\[\frac{\gamma M_i^2 - \frac{\rho u_i^2}{p_i}}{p_i} = \frac{1-(p_2/p_1)^\frac{\kappa}{\gamma}}{K_{12} \frac{T-1}{\gamma} + 1 - \ln(p_2/p_1)^\frac{\kappa}{\gamma}} \] \hspace{1cm} (1)

ここで、\(\rho, p, u, M \) はそれぞれ密度、圧力、速度、マッハ数であり、添え字 1, 2 はパイパス入口、出口断面における物理量の平均値を示している。\(K_{12} \) は管路要素の損失係数の総和であり、本研究においてパイパス部は直管とベンの組合せで構成されていることより、以下の関係が得られた。

\[K_{12} = \sum \lambda \frac{l_1}{l_e} + \sum \xi + \zeta \] \hspace{1cm} (2)

ここで、\(\lambda \) は管摩擦損失係数であり、本研究では対象として2.92の矩形管路に対する Cornish の実験値を最小二乗近似することによって、次式で与えている。

\[\lambda = 0.04 \text{Re}^{-\frac{1}{3}} \] \hspace{1cm} (3)

\(l_1 \) は直管部の長さ、\(l_e \) は流路断面の大きさを代表する長さスケールであり、辺の長さ a, b を有する矩形断面に対しては、以下の式より決定される量である。

\[l_e = \frac{2ab}{a+b} \] \hspace{1cm} (4)

\(\xi, \zeta \) はベン及び入口部における全圧損失係数で、Weisbach の実験式より、

\[\xi = 0.131 + 1.847 \left(\frac{b/2}{R} \right)^{0.55} \] \hspace{1cm} (5)

\[\zeta = 0.5 \] \hspace{1cm} (6)

と与えられる。ここで、\(R \) は管路中心におけるベンの局率半径であり、\(b \) は矩形断面を構成している半径方向の長さである。

計算中では、パイパス入口部において速度と密度を計算領域から外挙で与え、式(1)〜(6)の関係を用いたモデル化により出口部での値を算出している。圧力に関しては、これは逆に出口部で計算領域からの外挙とし、入口部ではモデル式を用いて導いている。

![Fig. 1 Schematic of Computational Domain in 2D Case](image-url)
3. 計算条件
3.1 2次元衝撃波反射問題 2次元計算では、ウェッジ（計算領域外）により発生した斜め衝撃波が平板上を反射する際に生じる乱流境界層との干渉を考える。計算領域の概形を図1に示す。計算対象は制御なし、数値計算によるバイパス制御、モデル計算によるバイパス制御であり、それぞれケースW(without Control)、ケースC(Computed)、ケースM(Modeled)とする。ケースC, Mにおいては、バイパス抽気孔が剥離領域の上流部と下流部に位置する2ケースを対象としており、それぞれをPosition1, Position2として参照する。2次元ケースにおけるバイパス幅は1/2mmとした。またバイパス出口にスロープを設けて平板と滑らかに接することにより、ステップ流路との干渉を回避している。主流条件は表1にまとめられている。
3.2 3次元後退衝撃波問題 衝撃波と乱流境界層の3次元干渉解析では、小宮山ら(9) や玉山ら(10)によるインテークを模擬した平板とウェッジからの流れ場に生じる後退衝撃波と乱流境界層の3次元干渉の実験を計算対象とした。図2に座標系を、表1に主流条件を示す。また、計算結果の比較を行うため、Yw-Zw 平面上の S1, S2, S3 断面を扱う。これらはウェッジ前線より、それぞれ 40mm, 75mm, 110mm 下流に位置している。バイパスの配置を図3に示す。まず、流れ場構造の理解とバイパス取付け位置の決定のため、バイパスをつけない状態をケース0として計算を行った。バイパス設置位置は、衝撃波を完全にまっすぐに設置したケース1と、抽気領域が剥離位置に一致するケース2の2通りである。前者は上流の境界層に運動量を与えることによる制御、後者は干渉領域自体の抽気による制御に焦点をあてたものである。ケース1、ケース2ではスパン方向に4つのバイパスを配置しているが、制御範囲をさらに広げるため、ケース1に対してさらに4つのバイパスを追加したケース1w(wide)も計算対象に加えた。ただしこのとき、ウェッジから5番目以降の抽気孔が計算領域から外れててしまうため、モデル式による吹出し条件の決定には4番目の抽気孔の値を流用することとした。また、全てのケースでバイパス断面形状を高さ2mm、幅6mmとした。

Fig. 2 Coordinate Systems and Reference Planes

Fig. 3 Bypass Arrangement in 3D Cases
4. 計算結果および考察
4-1 2次元干渉場計算 それぞれのケースにおいて予測された静圧分布を図3に示す。この図より、両設置位置において、パイパス流れを計算したものとモデラ化した結果は定性的に良く一致しており、モデル化の妥当性が伺える。パイパス設置位置による比較を行うと、Position2よりも1の方が干渉領域は明らかに小さい。このことにより、パイパス流れは干渉領域全体を覆うよりも、弱離衝撃波をまとある形で設置した方が干渉抑制効果は高いと考えられる。

図5は壁面圧力分布を比較したものである。パイパス流れのモデル化による影響は小さく、両設置位置で計算とモデル化の差は殆ど見られない。設置位置に着目すると、Position1の方がより干渉領域は小さいが、制御なしの結果と比較すると、流れ方向の干渉抑制効果は顕著でない。これらの計算結果に対して、パイパスを通過する質量流量を表2にまとめた。再度、設置位置に対する比較を行うと、Position2の方が質量流量は常に大きい。これは、パイパス抽気孔が反射衝撃波よりも干渉に位置することにより、パイパス出入口で大きな圧力差が生じたためである。ただし、
これにも関わらず干渉領域が抑制されなかったのは、吹出し孔が干渉領域内に入ってしまい、吹出した流れと干渉領域内の再循環流が干渉したためである。一方、Position1 では、バイパス流れこそ小さいものの、吹出し流れが干渉することなく、さらに、干渉領域内の低速流がバイパスに吸い込まれる形態となっているため、干渉領域が抑制されたものと考えられる。モデル化の妥当性に関しては、Position1, 2 に対してそれぞれ 20 [%], 13 [%] の誤差となっている。これは、全圧損失係数の値が厳密には正しくない、モデル化により与えている供気圧力、吹出し温度に分布を持たせていない、バイパス出口部の直管が短く吹出し速度が設定の 1/7 乗では無いか、物理現象を再現し得ていないモデル化部分から生じていると考えられる。しかしながら、壁面圧力分布より分かるように、本モデル化は干渉領域の位置、高原部の圧力といったバイパスが領域全体に与える影響を妥当に予測できていることより、計算負荷の低減に十分十分有効な手段と言える。

<table>
<thead>
<tr>
<th>Bypass Position</th>
<th>Case C</th>
<th>Case M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 1</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Position 2</td>
<td>0.79</td>
<td>0.68</td>
</tr>
</tbody>
</table>

4・2 3 次元干渉場計算 図 6 は各ケースに対する静圧分布示している。バイパスを設置しなかったケース 0 と比較して、ケース 1 では上流付近の剥離衝撃波が弱くなっている様子が見て取れる。また、ケース 2 では比較的明確な剥離衝撃波位置が確認できることより、干渉抑制効果が小さいと言える。これは、2 次元ケースとは異なり、キャビティ流れが弱いことに起因すると考えられる。ケース 1 において、下流領域の剥離衝撃波が比較的強いのは、上流領域にしかバイパスが設置されていなかったためである。これは、より下流の干渉領域までバイパスを配置したケース 1w において、干渉抑制領域

Fig. 6 Static Pressure Contour Lines for Each Case
が下流側に広がっていることより理解できる。
図 7 は、S1、S2、S3 断面におけるウェッジ側壁と平板上の静圧分布の比較である。ケース1, 1w において、平板上の圧力上昇位置はスパン方向に移動しており、干渉領域が拡大している。
これは、主流より静圧の高い流体がバイパスから噴出するためである。ただし、S2, S3 断面で高原部の圧力上昇が抑えられていることより、剥離衝撃波、及びこれに関わる干渉が抑制されていると推測される。ケース 2 では、圧力上昇位置の移動は小さい。また、高原部への影響が抽気孔付近でのみ顕著であることから、干渉制御に与える働きは小さいと考えられる。これらは図 6 で得られた知見と一致するものである。
表 3 に、計算領域出口面 KEDJ における平均全圧を示している。バイパスを設置することにより平均全圧は増加し、全圧損失が抑えられていることが確認できる。また、3 次元干渉場に対しては、ケース 1 のバイパス設置形態の方が適していることも分かる。

<table>
<thead>
<tr>
<th>Table 3 Comparison of Total Pressures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. Total Pressure [Pa]</td>
</tr>
<tr>
<td>Case 0</td>
</tr>
<tr>
<td>480982.3</td>
</tr>
<tr>
<td>Case 1</td>
</tr>
<tr>
<td>488410.6</td>
</tr>
<tr>
<td>Case 1w</td>
</tr>
<tr>
<td>487966.2</td>
</tr>
<tr>
<td>Case 2</td>
</tr>
<tr>
<td>486516.9</td>
</tr>
</tbody>
</table>

5. 結 言
本研究により得られた知見は以下の通りである。

- バイパス部のモデル化が流れ場全体に与える影響は小さく、計算負荷の低減に有効な手段と言える。
- 複数のバイパスを設置することにより、3 次元衝撃波/乱流境界層干渉の抑制、全圧損失の減少が可能である。
- バイパスの配置位置によって干渉制御に与える効果が異なるため、より適したバイパス配置の選定が今後の課題として残されている。

文 献
(2) 横部伸武・ほか 3 名, 機論, 64-624, B (1998), 2417-2423.
タービン段における非定常空力特性解析
（CFD 及び EFD による評価）

*山田和豊 (岩手大工)
船崎健一 (岩手大工)
関間和人 (岩手大院)

1. 緒言
近年、数値計算手法の成熟に加え、めざましい計算機性能の向上によって、大規模かつ詳細な流れ場の解析が可能となり、ターボ機械の設計開発ツールとしても CFD が使用されるようになった。特に、ターボ機械において、翼列全周の流れ場を対象とした解析や、静翼列および動翼列の内部流れ場を一度に解析する多段の解析も可能となった。多段翼列の場合、上流側翼列から生じる後流は、下流の翼列の翼面境界層と干渉し、剝離や翼頂動、騒音、伝熱特性などに影響することが考えられる。しかしながら、このようにターボ機械の複雑な三次元流れ場を比較的容易に調査することが可能となったにもかかわらず、動静翼間距離やクロッキングの効果など翼列干渉が性能に及ぼす影響は未だ明らかではない。この要因の一つには、タービン段などの内部流れ場では、三次元性が強く、極めて複雑な流れ場が形成されていることがある。また、動静翼列干渉の場合、上流側翼列からの後流が周期的に流れ込む二次流れと干渉しながら通過するため、翼列内の流れ場に非定常性がまもたらされる。このような非定常性の効果を定量的に評価することは設計においても重要であるが、動静翼列干渉に伴うタービン翼列内の非定常流動現象は未だ明らかにされておらず、これらに関する確立された評価法はない。そこで、本研究では、タービン段について非定常 RANS シミュレーションを適用し、動静翼列干渉に伴う翼列内部の非定常流動現象を詳細に解析した。

2. 数値解析方法および計算格子
本研究では、静翼列および動翼列の一様で構成されるタービン段を解析対象とした。実験において、静翼上流および下流の流れ場が⁄ バリトーデー管で計測され、また熱線流速計を用いた周期的多点抽出法により、動翼下流での対流流れ場が調査された。実験により得られた静翼列上流の速度分布は、数値解析での流入境界条件に用いられた。

数値計算手法として、有限体積法を用いた緩和形陰的高解像度風上スキームを用いた。本スキームでは、時間方向には非粘性流束および粘性流束のすべてを陰的に離散化し、空間方向には六面体の計
算セルを用いた cell-centered 法による有限体積法に基づいて離散化する。非粘性流束は Roe の近似リーマン解法を用いた MUSCL 形の高次精度 TVB 法により、粘性流束は中心差分的に評価された。乱流モデルには、k-
ω 二方程式モデルを採用した。線形化されて得られた連立一次方程式は、近似因子化法によらず、Gauss-Seidel 形の点緩和法により解かれた。その際、各時間ステップでニュートン反復を実行し、線形化および点緩和に伴う誤差を除去して時間精度を二次に保った。なお、動翼先端半径およびタービン段上流での音速で定義される無次元時間刻みを 0.02 とした。

図 1 に、本解析に使用した静翼および動翼の計算格子図を示す。計算格子として、H 型の構造格子を生成した。静翼の解析に使用した計算格子は、流れ方向に 207 セル (翼間部に 79 セル)、スパン方向に 63 セル、ピッチ方向に 74 セルから構成された。一方、動翼では、流れ方向に 167 セル (翼間部に 69 セル)、スパン方向に 59 セル、ピッチ方向に 69 セルを設定した。セル総数は、静翼格子で 965,034 セル、動翼格子で 668,334 セルであった。また、模円型偏微分方程式を用いて格子を生成し、翼面近
傍の格子直交性を高めている。なお、滑りなしの断熱条件を適用して壁での粘性流束を評価するために、壁面上の最小格子幅は翼先端コード長の 5×10^{-5} ($y^{+} < 1$) とした。

動静翼干渉問題を簡略化するために、静翼列では定常解析が実施され、動翼列では静翼列出口の流れをもとに非定常解析が実施された。このとき、それぞれ静翼および動翼では一流路のみが解析された。つまり、定常解析で得られた静翼列出口の流れ場を動翼列入口の境界条件として与え、静翼から発生した後流と動翼列内の二次流れとの干渉について動翼列の非定常解析を実施することで、ターピン段非定常空力特性に与える動静翼干渉の効果を調査した。この場合、静翼列内の流れ場に対する動翼列の影響は無視する。また、動翼列解析の際に、静翼列と動翼列の翼枚数の違いによって生じる周期境界条件の問題は、静翼列の流路幅を動翼列のそれに一致させることで回避した。本研究では、特に静翼後流と動翼列内の二次流れの干渉に着目し、上述のように動静翼干渉問題を簡単化することによって、計算負荷を軽減し、計算時間の短縮、計算コストの削減を図った。

4. 解析結果
4.1 計算結果の検証

静翼下流における周方向平均流れ分布を図2に示す。同図に示されるそのように、軸流速度およびヨー角分布とともに、数値計算結果は実験結果に概ね一致している。図3は、静翼下流における軸流速度分布を示している。実験結果および数値計算結果は、定性的によく一致した分布を示しており、両者においてケーシング側負圧面近傍に小さな流れ渦を確認できる。前節で述べたように、動翼の非定常解析
における流入境界条件として定常解析で得られた静翼下流の流れ場が用いられ、静翼後流と動翼列流れの干渉がタービン段非定常空力特性に及ぼす効果が調査される。したがって、この効果を評価する上で、静翼列下流の流れ場が正確に再現されることが重要である。上述のとおり、計算結果は実験結果と定性的によく一致しており、動静翼干渉の解析を行うに問題ないといえる。

4. 2 動翼列内の時間平均流れ場

図4は、動翼列内の渦流れ場を示している。同図には、Critical point理論に基づいて同定された渦コアが示されており、その渦コア上には無次元ヘリシティーH_nの分布が色付けされて表示されている。無次元ヘリシティーH_nは、次式のように定義される。

$$H_n = \frac{\epsilon \cdot \omega}{|\epsilon||\omega|}$$

ここで、ϵは速度ベクトル、ωは渦度ベクトルである。すなわち、無次元ヘリシティーH_nは渦度ベクトルと速度ベクトルの成す角の余弦値を表しており、その絶対値が1となる領域は流れ方向に縦渦が強く巻き上げられていることを意味する。また、同図には、非定常解析により得られた時間平均流れ場に加え、比較のために定常流れ解析の結果が示されている。定常流れ解析では、流入境界条件に周方向に平均化された静翼下流の流れ場が使用され、動静翼干渉の効果が考慮されていない。図2からわかるように、定常流れ場において、翼端側およびハブ側の動翼前線流れに馬蹄形渦が形成されている。非定常解析の時間平均流れ場では、定常流れ場と異なり翼端側の馬蹄形渦が強く巻き上げている。これには、馬蹄形渦と周期的に動翼列内に流入する静翼後流との干渉の影響を考えられる。動翼前線に
形成された馬蹄形渦で、無次元ヘリシティーが正の値を示している部分が負圧面側の脚、負の値を示している部分が圧力面側の脚に対応する。馬蹄形渦のうち圧力面側の脚は、動翼列内の二次流れによって隣接翼の負圧面側へと移流している。負圧面側前面の翼端近傍には、無次元ヘリシティーの分布から馬蹄形渦の回転方向とは異なる渦構造が形成されていることがわかる。馬蹄形渦の負圧面側の脚は、この渦構造との干渉および翼前線負圧面側での急激な加速によって消減していると考えられる。図5は、ハブ面および翼負圧面上の限界流線を示している。負圧面上の限界流線には、翼端側の前線近傍に剣離線が現れている。図6は、この領域について拡大して示したもので、負圧面上の限界流線に加えて同定された渦構造が表示されている。図4において、負圧面側前縁の翼端近傍に馬蹄形渦の巻きさとは反対の渦構造がみられたが、これはこの負圧面境界層の剣離に伴う剣離渦であることがわかる。翼端側に形成された馬蹄形渦および負圧面側の剣離渦は、流路半ばで互いに干渉し、下流へ流流ながれ大規模な流路渦へと成長する。したがって、図5の負圧面上の限界流線に示されるように、この流路渦の影響によりハブ側へ向う流れが翼端側で確認できる。一方、ハブ面上の限界流線から圧力面側から負圧面側へと向かう二次流れがみられ、負圧面上の限界流線においても翼端側のハブ近傍に二次流れの影響が現れている。図7に、動翼出口におけるエントロピー分布を示す。同図からわかるように、翼端側およびハブ側の負圧面付近に高エントロピー領域が発生している。翼端側の大規模な流路渦によって、高エントロピー領域が翼端側負圧面に大きく広がっている。また、上述のように、二次
流れによって運ばれたハブ近傍の低エネルギーフローが、負圧面側の対称元部に集積している。これに起因してハブ側にも高エントロピー領域が生じている。図8は、実験により得られた動翼下流の乱れ度Tuの分布を示している。乱れ度Tuは、次のように定義される。

$$ Tu = \frac{\sqrt{\frac{\sum(u(t)-U)^2}{N} \cdot V}}{V} $$(2)

ここで、$u(t)$は瞬時速度、Uはアンサンブル平均速度、Vはタービン段上流での主流速度を表す。同図から、翼端側80％スパン付近およびハブ側20％スパン付近に乱れ度の大きな領域が確認され、流路の発生が示唆される。ハブ側に比べ翼端側で乱れ度Tuの値が大きく、動翼列内の流れ場は翼端側流れ路渦が支配的であると考えられる。これらの結果は、数値計算結果とよく対応している。

4. 3 動翼列内流れの時間変化

ミッドスパン断面におけるエントロピー分布の時間変化を図9に示す。同図において、静翼前後流が動翼列内に流入し次の後流が動翼列に流入するまでの約1周期分が示されており、翼端後流が、動翼前線と干渉した後、圧力面および負圧面の翼面境界層と干渉しながら、動翼列内を通過する様子を観察される。無次元時間$t=52.4$は、静翼後流が動翼前線との干渉によって分断される直前の流れ場を示している。動翼列に流入した静翼後流（図中A）は、負圧面および疎接圧力面と干渉し、翼面境界層と主流との速度差から湾曲させられている。動翼前線によって分断された後、これはすぐに下流へと移流していくことがわかる。一方、上流側の静翼後流（図中B）は、次に疎接前線と干渉するまでの間、動翼前線付近に停滞するため、動翼前線の圧力面側に高エントロピー領域が形成される。この上流側の静翼後流は、疎接前線により分断されると、上述のように動翼列内を移流していく。このとき、圧力面側前線に集積していた低エネルギー流体は、圧力面と負圧面の間の圧力勾配により負圧面側へと移流しながら動翼列を通過し、動翼列出口において負圧面側に集積している。
図10は、動翼列内横断面における全圧損失分布を示している。動翼後流に伴う非定常性の効果を明らかにするために、図図では、時間平均流れ場における全圧損失係数\(\zeta_p\)の分布が、定常解析結果からの差で示されている。全圧損失係数\(\zeta_p\)は、次式のように定義される。

\[
\zeta_p = \frac{\omega (r c_a - r c_p) - (P - P_1)}{U_2^2/2}
\]

ここで、\(\omega\)は動翼角度速度、\(r\)は動翼間軸軸からの半径、\(c_a\)は絶対速度の周方向成分、\(U_2\)は動翼先端周速、\(P\)は全圧を表わし、添え字の1はターピン段上流であることを表わす。また、同図には、無次元ヘリシティ \(H_i\) によって色付けされた渦構造が示されている。動翼出口において、翼端側80%スパンに対して高い全圧損失領域を確認できる。上流では、この高損失領域は、翼端側流れ渦の中心位置よりハブ側の負圧面近傍にみられる。上記のとおり、動翼列内の二次流れによって負圧面側へと選ばれた静翼後流の低エネルギー流体は、遠心力により翼端側へと輸送され、翼端側流れ渦と干涉する。この干涉の結果、翼端側80%スパン付近に高い非定常損失が生成されたと考えられる。

5. 結言

ターピン段について非定常 RANS シミュレーションを適用し、動翼後流に伴う非定常流動現象を詳細に解析した。その結果、以下の知見を得た。

(1) 動翼列において、非定常解析の時間平均流れ場は、定常流れ解析により得られたそれとは異なる。非定常解析では、翼端側の流れ渦が定常解析に比べ強く巻き上がる。

(2) 静翼後流は、動翼前縁との干涉によって断続されるまで、動翼前縁付近に停滞する。分断後、静翼後流は動翼列を下流へと移流するが、圧力面側前縁に集積した低エネルギー流体は圧力面と負圧面の間の圧力勾配によって、動翼出口までに負圧面側へと輸送される。

(3) 動翼列内の二次流れと周期的に流入する静翼後流との干涉に起因して、翼端側80%スパン付近に高い全圧損失領域が発生する。

参考文献

Download service for the GTSJ via 54.70.40.11, 2020/04/05.

—194—
遷音速軸流圧縮機動翼列における
翼端漏れ渦崩壊に起因した自励振動現象

＊古川雅人（九州大学）、山田和豊（岩手大学）
中野智樹（九州大学）、井上雅弘（九州大学）

1．緒言

軸流圧縮機の動翼列では、翼先端とケーシングの間から漏れ出る翼端漏れ渦流れと主流との間のせん断層が巻き上がって翼端漏れ渦が形成され、この大規模発渦構造としての漏れ渦が翼端付近の流れ場を支配する。著者らの最近の研究[1]～[3]から、失速点近傍（有負荷作動条件）において低速軸流圧縮機の翼端漏れ渦が崩壊することが新たに見出され、その渦崩壊の効果により翼端漏れ渦の構造および挙動に劇的な変化がもたらされることが明らかにされている。遷音速軸流圧縮機の動翼列では、翼端線上流に形成された離脱衝撃波が翼端漏れ渦が干渉を起こすため、翼端漏れ流れ場は一層複雑な形態を呈するが、低速軸流圧縮機と同様に、失速点近傍で翼端漏れ渦が崩壊を起こすることが観察されている[4]～[5]。低速および遷音速軸流圧縮機動翼列の失速点近傍で発生する翼端漏れ渦の崩壊はいずれの場合もスパイラル形の渦崩壊形態を呈し、その渦崩壊に伴って、翼端漏れ渦は翼間内を周期的に蛇行して翼端への圧力面と干渉することが示されている[2]、[3]、[5]。すなわち、翼端漏れ渦のスパイラル形崩壊に起因した動翼列流れの自励振動が示されている。

本報では、遷音速軸流圧縮機の動翼列流れに対して、大規模な非定常3次元数値解析を行うことにより、最適効率点近傍の作動条件においても、離脱衝撃波と翼端漏れ渦の干渉に起因する間欠的な渦崩壊が発生し、動翼列流れ場に極めて大きな自励振動を引き起こすことを示す。

2．解析対象および数値解析方法

本研究では、遷音速軸流圧縮機動翼列 NASA Rotor 37 を解析対象とした。動翼の翼枚数 36 枚、ハブ/チップ比 0.7、前縁でのチップ半径 252 mm、アスペクト比 1.19、翼先端でのソリディティが 1.28 である。動翼が回転している状態での翼先端隙は 0.420 mm である。また設計点での全圧比は 2.106、流量は 20.19 kg/s、翼先端速度は 454 m/s であり、動翼への設計相対流入流れは全スパンにわたって余音速である。本研究では、最適効率点近傍（93%チョーク流量）で解析を行った。

数値計算手法として、有限体積法を用いた緩和形の高解像度風上スウィング[6]を用いた。本スキームでは、時間方向には非粘性および粘性流束のすべてが陰的に離散化され、空間的には六面体の計算セルを用いたcell-centered法による有限体積法に基づいて離散化が行われた。非粘性流体はRoeの近似リーソン法を用いたMUSCL形の高次精度TVD法により、粘性流体は中心差分的に評価された、線形化されて得られた連立一次方程式は、近似因子化法によらず、Gauss-Seidel形の点緩和法により解かれた。その際、各時間ステップでニュートン反復（25回）を実行し、線形化および点緩和に伴う誤差を除去して時間精度を二次に保つ。なお、乱流モデルとして、k-ω二方程式モデル[7]を用いた。

計算格子は、計算領域を主流域と翼先端隙間の二領域に分割し、各領域で構造格子を形成した。主流部に流れ方向に205セル、スパン方向に150セル、ピッチ方向に100セルを有したI型格子を設定した。翼先端すき間には、前縁のひずみを少なくするために0型格子を用い込み、コード方向に98セル、ピッチ方向に32セル。
3. 解析結果

図1に、動翼列での全圧上昇比および動翼に作用するトルクの時間履歴を示す。同図から、流れ場が時間とともに大きく変動していることが確認できる。ここでは、トルクが極大・極小を示す無次元時刻 \(\tau = 6.35 \) および無次元時刻 \(\tau = 7.63 \) での瞬間流れ場について述べる。

図2(a)に、無次元時刻 \(\tau = 6.35 \) におけるケーシング側から眺めた流れ構造を示す。同図には、特異点理論に基づいて定義された渦構造（グレースケールの等値面）と95%スパン断面における相対マッハ数 \(M_r \) の分布（等高線）が示されている。上側翼間および下側翼間の渦構造には、それぞれ相対マッハ数 \(M_r \) の分布および無次元ヘリシティー \(H_r \) の分布がグレースケールで表示されている。無次元ヘリシティーは渦度ベクトルと速度ベクトルの成す角度の余弦値として定義され、その絶対値が1となる領域は流れ方向に幅が広く上がっていることを意味する。動翼前線付近のマッハ数分布（等高線）に着目すると、動翼前線の上流に離脱衝撃波が発生していることが分かる。また、翼先縁負圧面の前線近傍から翼端流れ渦が発生し、隣接翼の圧力面側へと発達している。前線近傍では、翼端流れ渦に沿った無次元ヘリシティー \(H_r \)（図中の下側翼間）がほぼ1（黒色）の値を示していることから、動翼先端のすき間を流れる流れが渦構造として強く巻き上げていることがわかる。しかしながら、衝撃波前後での翼端流れ渦に沿った無次元ヘリシティーの分布をみると、衝撃波上流側では1（黒色）を示しているが、衝撃波との干渉直後では1（白色）へと激変し、そのすぐ下流で再度1となっており、衝撃波直後で渦構造に沿った小さな逆流領域が形成されていることがわかる。さらに、翼端流れ渦上の相対マッハ数 \(M_r \) の分布（図中の上側翼間）から、衝撃波直後の渦構造では、流れが極めてゆっくりと減速されていることが認められる。このように渦構造内に獲え点が形成されることとは僅かに発生状態の特徴であり、この無次元時刻 \(\tau = 6.35 \) において、翼端流れ渦は衝撃波との干渉により小規模な崩壊を起こしているといえる。この翼端流れ渦の崩壊に伴って流れ渦は膨張し、低速度流体で構成された崩壊領域が衝撃波下流に大きく広がっている。その結果、翼端流れ渦の崩壊領域と隣接翼圧力面との干渉が生じている。

次に、無次元時刻 \(\tau = 6.35 \) と同様に可視化された無次元時刻 \(\tau = 7.63 \) における渦流れ構造を図2(b)に示す。この瞬間において、動翼列内の流れ場の様相は大きく変化していることがわかる。最も顕著な変化は、無次元時刻 \(\tau = 6.35 \) において発生していた翼端流れ渦の崩壊が消滅していることである。翼端流れ渦に沿った相対マッハ数分布から渦構造のようみ点を確認できず、また無次元ヘリシティー分布も前線から下流まではほぼ1の値を示している。このように、離脱衝撃波との干渉に起因した翼端流れ渦の崩壊が消減し、渦構造に伴うブロックエッジ効果は存在していない。その結果、離脱衝撃波の位置が無次元時刻 \(\tau = 6.35 \) よりも前線側へと後退している。このように、動翼前線上流に発生した離脱衝撃波は約10〜20％コード程度の振幅で流れ方向に大きく自励振動していることがわかる。

以上の結果から、最高効率点近傍においても衝撃波による翼端流れ渦の崩壊が間欠的に発生し、その間欠的な渦崩壊が流れ場の自励振動を引き起こしていることがわかる。以下に、この間欠的な渦崩壊の発生メカニズムについて述べる。

図3は、図1に示された(a)から(i)までの時刻における翼先端での翼表面の圧力差分布をコード方向に示したものである。まず時間(a)に着目すると、この瞬間においては渦流の崩壊は起こっておらず、翼面上の圧力
差は最大となっている。次に、図4に示す全圧上昇比が最小を示す瞬間（a）の流れ場においては、満れ渦が崩壊を起こしていることも、翼面上の圧力差は最小値を示している。そして、全圧上昇比が再び高い値を示す瞬間（f）の流れ場では、翼面上の圧力差が再び高い値となっている。

図4には、図4に示された(a)から(f)までの時刻での翼前線付近における翼端満れ渦コアに沿ったスワール数rの分布が示されている。スワール数rは以下の式で定義される。

\[r = \frac{\Gamma}{2\pi r_{core} V_e} \times \frac{A_{max}}{V_e} \]

ここで、\(\Gamma \)は渦の循環、\(r_{core} \)は渦コア半径、\(V_e \)は軸方向速度成分、\(A_{max} \)は渦コアにおける旋回方向速度成分の最大値を表す。このスワール数は、強い渦でその値が大きくなり、ある値（マッハ数に依存）以上になると渦崩壊が発生する。渦崩壊を起こしていない瞬間（a）においては、翼面上の圧力差が高く翼負荷が大きくなくなってであることから、翼前線付近の満れ渦でスワール数も高い値を示している。一方、渦崩壊が見られる瞬間（f）においては、翼面上の圧力差およびスワール数ともに低い値を示している。そして、再び全圧上昇比および翼負荷が高い値を示す瞬間（f）においては、スワール数も高い値を示すようになる。つまり、翼端満れ渦が崩壊していない瞬間では、渦崩壊によるプロッケージ効果が小さく、満れ渦と動翼との干渉が弱めること（図2（b））から翼面上の圧力差は大きく、その結果強い満れ渦が形成され、そのときスワール数も大きくなる。この動翼前線に生じた強い満れ渦は下流側へと移流して離脱衝撃波と干渉する結果、渦崩壊を起こし、そのプロッケージ効果によって離脱衝撃波が上流へと移動することになる。この満れ渦の崩壊が起こると、渦崩壊によって満れ渦が嵩張りし、崩壊領域が後続翼前線と干渉する（図2（a））結果。翼面上の圧力差が小さくなり、弱い満れ渦が形成されてスワール数も低下する。この前線に生じた弱い満れ渦が下流へと移流すると、衝撃波との干渉による満れ渦の崩壊は消滅し、離脱衝撃波は下流側へと移動する。この一連のメカニズムが周期的に繰り返されることによって、流れの自励振動が発生する。以上の自励振動発生のメカニズムを図5に示す。

4. 結言

選音速軸流圧縮機動翼NASA Rotor 37 に大規模な非定常3次元数値シミュレーションおよびビジュアルデータマイニング手法を適用して、最高効率点近傍における動翼列内部の複雑渦流れ現象について解析した。その結果、小規模な翼端満れ渦の崩壊が周期的に発生・消滅を繰り返しており、翼端満れ渦のブロッケージ効果および翼負荷の周期的な変動が発生し、流れに自励振動が引き起こされることが明らかになった。このことから、選音速軸流圧縮機動翼列では、失速点近傍だけでなく、最高効率点近傍においても翼端満れ渦の崩壊に起因した自励振動が発生し得ることを示している。

文献

[4] 古川雅人，ほか4名，選音速軸流圧縮機動翼列における翼端満れ渦の崩壊，日本機械学会第78期流
図1 動翼の全圧上昇比およびトルクの時間履歴

図2 翼先端近傍の流れ場

(a) $\tau' = 6.35$ (b) $\tau' = 7.63$
図3 翼先端での翼表面の圧力差分布
図4 翼前縁近傍での翼端側面流れに沿ったスワール数分布

・漏れ渦の強い領域Aが下流へ移流し、離脱衝撃波と干渉して崩壊
・漏れ渦は崩壊により著しく膨張（大きなプロッケージ効果）
・その結果、
漏れ渦の崩壊領域と隣接翼前縁部が干渉→前縁部翼負荷が低下
離脱衝撃波が上流へ移動

領域A
渦の強さ＝強
スワール数＝高
翼負荷＝高

領域B
渦の強さ＝弱
スワール数＝低
翼負荷＝低

・漏れ渦の弱い領域Bが下流へ移流し、漏れ渦の崩壊が消滅
・漏れ渦によるプロッケージ効果の低下
・その結果、
漏れ渦と隣接前縁部との干渉が低下→前縁部翼負荷が増大
離脱衝撃波が下流へ移動

図5 翼端側面崩壊の間欠的発生メカニズム
タービンディスクキャビティへの主流巻き込みに関する数値解析

＊浜辺 正昭、児玉 秀和、寺町 健司（石川島播磨重工業株式会社）
山本 一臣、野崎 理、樋本 健治、山根 敬（航空宇宙技術研究所）

1. まえがき

航空エンジンの高効率高性能化にともない、タービン入口温度は飛躍的に上昇してきた。したがって、このような過酷な環境の下にさらされるタービンの寿命を確保するためには、より高温に耐えうる材やディスクスの開発の他、より効果的な内部冷却技術が必要不可欠であり、精力的に開発されてきた。圧縮機からの冷却空気はタービンディスクの冷却や翼の内部冷却に用いられる一方で、主流への噴出することで主流の高溫ガスがキャビティ内へ流入をするのを防ぐ役目も果たしている。この 2 次空気の噴出量が増えると主流の巻き込みは増大するが、その一方で、2 次空気と主流が干渉して生じる圧力損失の増加がタービン性能の悪化につながるため、ある程度の巻き込みを許した設計にならざるを得ない。したがって、タービンの寿命と性能を最適化する設計においては、主流がキャビティ内へ巻き込む現象を精度良く捉えることが重要な技術となってくる。

この主流巻き込みに関する研究は、これまで実験を中心に行われてきたの他、それによる静翼の存在による流れ場の周方向変化が巻き込み量に大きく影響することが分かっている。また、動翼が作り出す非定常が主流巻き込みに与える影響が無視できないことも報告されている 3)。最近では、CFD（Computational Fluid Dynamics：数値流体力学）を用いて静翼と動翼の両方の影響を考慮できる非定常解析が行われはじめ、CFD においても動翼の存在が主流巻き込みに与える影響が捉えられている 4) 5)。しかしながら、この動翼の影響には必ずしも一般性があるとは言えず、複雑な非定常現象が主流巻き込みに作用するメカニズムは完全には解明されていない。

ここでは、経済産業省の ESPR（環境適応型次世代超音速推進システムの研究開発）プロジェクトで行われたリグ試験形態を対象に、2 ケースの 2 次空気流量について動静翼を含む非定常解析を行い、動静翼が主流巻き込みに与える非定常性の影響などについて調べたので報告する。

2. 方法

図 1 に今回の解析対象の概略図を示す。主流部はそれぞれ 36 枚の静翼と模擬動翼（円柱）から構成され、ポス比は 0.95 である。キャビティ部については、タービン内径 R に対するキャビティ幅は 6.7% であり、また、このキャビティ幅に対して、リムシールの隙間は 5% となっている。

計算には有限体積法ベースの非定常多段翼流れ解析コード 6)を用いた。この解析コードは、航空宇宙技術研究所によって開発されている CFD プログラム UPACS7)（Unified Platform for Aerospace Computational Simulation）をベースに多段翼列用に拡張したもので、計算領域を複数のブロックに分割して並列計算を行うマルチブロック構造格子法を採用することにより、複雑形状を持つ多段翼列の非定常解析を容易に行うことができる。図 2 は CFD 解析モデルであるが、合計 26 ブロックから構成されており、同研究所のスーパーコンピュータ（NSⅢ：Numerical SimulatorⅢ）を用いて並列計算を行った。

基礎方程式はレイノルズ平均圧縮性 3 次元ナビエ・ストークス方程式を用いた。対流項は Roe スキームを用い、MUSCL 法を用いて高次精度化している。また、粘性項については中心差分を用いた。時間積分は MFGS 陰解法をベースとし、ニュートン反復法により時間精度を確保している。乱流モデル

第31回ガスタービン定期講演会
講演論文集, 2003.6（北見）
Download service for the GTSJ via 54.70.40.11, 2004/01/05.
は Baldwin-Lomax の代数モデルを用いた。

境界条件としては、主流および 2 次空気の入口で全温、全圧および流入角を与え、主流出口で静圧を与えた。翼面やステータ、ディスクなどの壁面はすべて滑りなしで断熱の条件を与えた。また、翼列間の接続では、隣り合う翼列の境界の値を用いて線形補間によって値を決めている。なお、所定の 2 次空気流量が得られるように 2 次空気入口での全圧を調整している。今回は、表 1 に示す 2 ケースの 2 次空気流量について解析を行った。

図 1. 解析対象

図 2. CFD 解析モデル
表 1. 解析条件

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>流量比(2次空気/主流)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケース1(流量小)</td>
<td>0.70%</td>
</tr>
<tr>
<td>ケース2(流量大)</td>
<td>1.20%</td>
</tr>
</tbody>
</table>

3. 結果と考察

今回の解析においては、時間刻み幅は500 ステップで1 周期（動翼1 枚が静翼1 枚を通過する時間）進むように設定した。また、キャピティ内ではEkman-layer と言われる非常に速度の遅い環流が現れる。そのため、この環流が1 周するのに流量の小さいケース2 でディスク5 回転ほどの時間を要する。今回の解析ではディスク10 回転程度の計算を行った。なお、格子点数は26 ブロックで合計約100 万点であり、NSIII の中核システムであるCcNSS（Central Numerical Simulation System）による11CPU の並列計算で約1 週間の解析時間を要する。

図3 の左図は、今回の非定常解析における2 次空気入口での流量の変動をディスク1 回転分にわたってプロットしたものであり、また、この変動を周波数解析した結果を図3 の右図に示す。ただし、周波数解析にはディスク5 回転分のデータを用いている。図3 から両ケースにおいて動翼通過の周波数（900Hz ）にピークがあることが分かる。一般に、主流の流れに対して動翼が生じるポテンシャル場が回転することによって、流れ場が動翼通過周波数で周期的に変動する。これから、動翼通過によるポテンシャル場の変動が巻き込み量の変動にも影響していると考えられる。

一方、図3 からは、この動翼通過周波数に加えて低周波数成分が表れていることが分かる。しかしこの低周波数成分は周波数、絶対値ともに両ケースで異なっている。今回のように静翼後方にキャピティが存在する場合、静翼が作り出す周方向の圧力分布により、リムシールを通しての流れの定常的な出入りが考えられるが、これに動翼の作り出す周期的なポテンシャル変動が作用して、複雑で非定常性の強い流れ場を形成していると考えられる。

なお、この低周波変動については、Feiereisenらの試験結果でもディスクの回転数に近い圧力変動として表れており、技術的な説明は詳しくされていないが、物理的な現象であると考えられる。ただし、今回のディスク10 回転ほどの解析時間ではこの低周波変動をきちんと捉えられていない可能性があり、議論はできない。今後、もう少し解析を進めて、このメカニズムを解明していきたい。

そこで、この非定常的変動が主流巻き込みに与える影響を調べるために、主流の巻き込み程度の尺度として全温T を用い、(1) 式で定義される全温分率η

\[\eta_{\text{vol}} = \frac{T - T_0}{T_s - T_0} \]

(1)

ステータ壁面での全温分率の非定常的変動を、ケース1 については図4 に、ケース2 については図5 にそれぞれ示す。これから、2 次空気流量が小さいケース1 の方が全体的に全温分率が低めに出ており、主流の全温ガスを巻き込んだ流れがステータ壁面に沿って降下している様子が捉えられている。
一方、2次空気流量の大きいケース2では、全温分率の低下がリム近傍に限られており、シールの効果が現れている。

ところで、時間1は図3のディスクの回転時間に対応しており、それぞれディスク1/6回転毎のデータである。つまり、動翼の羽根枚数は36枚であることから全ての時間で静翼との相対位置は同じである。したがって、仮に主流巻き込みに与える動翼の影響が動翼通過周波数からなる周期的な変動のみであるすると、全ての時刻で（多少の数値誤差はあるとは思われるが）同じ流れ場になるはずである。しかしながら、図4、5の両ケースにおいて、全温分率の低い部分、すなわち、主流の高温ガスを巻き込んだ高温の領域が移り変わっていく様子をうかがうことができ、低周波非定常現象の存在を示している。

4. まとめ

ESPRの主流巻き込み試験形態を対象に、タービンディスクキャビティへの主流巻き込み現象について、動静翼干渉を考慮した非定常解析を行った。その結果、動翼の通過によるポテンシャル場の変動のほかに、低周波非定常現象の存在を示す結果が得られた。また、ステータ壁面での全温分率から、この変動によって主流の巻き込み量が非定常に変動している様子が確認された。

![Convergence history](attachment:image1)

(a) ケース1

![Convergence history](attachment:image2)

(b) ケース2

図3. 2次空気流量変動（左：時間変動、右：周波数成分）
図4. ステータ壁面での全温分布変動（ケース1）

図5. ステータ壁面での全温分布変動（ケース2）
謝辞

本研究は、経済産業省の新規産業創出型産業科学技术研究開発制度による「環境適応型次世代超音速推進システムの研究開発」の一環として、新エネルギー・産業技術総合開発機構（NEDO）から委託を受けて実施したもので。本研究の実施に当たり、ご指導とご協力をいただいたNEDOおよび多くの関係各位のご厚意に対し、深く感謝の意を表します。

参考文献

6) 浜辺正昭．他．“NAL UPACS を用いた非定常段解析”，第 43 回航空機動・宇宙推進講演会講演集．2003
7) 山本一臣．他．“CFD 共通基盤プログラム UPACS の開発”，第 14 回数値流体力学シンポジウム講演論文集．2000
円形翼列周りに発生する不安定流れ
（平板翼の翼弦長の影響）

＊高間 信行、吉澤 晴夫、西村 勝彦（東京大学生産技術研究所）

1. はじめに

小型高速遠心圧縮機を広い流量範囲で効率良く作動させるために遠心圧縮機入口部に予旋回を与える。圧縮機への流入角度を制御する可変式入口案内翼を設置する方法がある。流量が少ない領域では案内翼の取付け角度を大きく周方向に傾けることにより、圧縮機動翼の入口で非常に強い旋回速度成分を持つ流れをつくる。このような流れの状態の時、流路内に卓越した周波数成分を持つ不安定な流れが生じると考えられるが報告6)がある。

著者らは、遠心圧縮機に使用される入口案内翼を模倣した旋回流発生装置を作製し実験を行い、案内翼後方付近で、周期性のある不安定な流れが発生していることを確認し、流れの構造を検討してきた7)。また、その旋回流発生装置の直管部に挿入されている心棒の有無、入口案内翼の翼幅、翼弦長の違いに関係なく入口案内翼後方で不安定流れが発生していること8) (9) (10)、案内翼の枚数の影響による流れの変化等を報告8) (9)し、この不安定流れの発生を抑制する異音防止タブの効果を提案10)してきた。また、PIVを用い案内翼まわりの不安定現象を捉えてきた10)。

今回、入口案内翼の形状を平板翼に変え、翼弦長の違い3種類の平板翼をそれぞれ設置し、それぞれの場合その後方に発生する不安定流れの状態を調べ比較したのでここに報告する。

2. 実験装置の概要及び実験方法

実験装置の概要図を図1に示す。実験装置は、吸込み型風洞の静定室に直管部を介し旋回流発生装置(Swirl generator)を取付けた。流入空気は旋回流発生装置外部より半径方向に流入し、2枚の円板に挟まれた一定の間隔を通過する際、円周上に並べられた24枚の案内翼(円形翼列)により任意の旋回を与えられ、長さ600mmの直管部を通過し風洞静定室(Settling chamber)へ流れ込む。なお旋回流発生装置から後方50mmの直管部位置St.1にコブラ型3孔ビートを挿入し、直管部の流速、流れ角、圧力の半径方向分布を測定し、軸方向速度より流量を算出した。旋回流発生装置の金属案内翼は、平板翼で厚さ2.0mm、前線、後線ともにR1.0mmで製作し、翼幅bは20mm、翼弦長cが異なる3種類(50mm, 70mm, 100mm)の平板翼を用意した。後線の半径位置がどの翼と同等位置になるように回転中心は、各翼とも後線から44mmに位置し、ビッチ角θ372mmの位置に取付け穴が設けてあり、穴を回転中心として翼取付け角αを半径方向に対し設定できる。旋回流発生装置の軸方向に一直線にハブ側壁面に沿って3箇所（上流よりP1, P2, P3）、シュラウド側壁面に沿って4箇所（上流よりP4, P5, P6, P7）に設

図1 実験装置概略図
圧孔があり、半導体小型圧力変換器により壁面静圧を測定した。風洞出口には十分長い直管部
にオリフィス流量計を設け流量を測定しピトーパ管より計算した流量と比較した。流量の調整
はオリフィスから十分下流に設置した円錐弁で行った。
実験は、3 種類の平板翼をそれぞれ使用し、入口案内翼の取付け角 α を 0° から 10° ごとに
設定し、60° まで行い不安定流れの発生する取付け角度 α を調べた。また同様に、その取付け角
度の旋回強さもピトーパ管より測定した值をもとに計算した。半導体小型圧力変換器の出力は
A-D 変換ボードを介しサンプリング周波数 2.5kHz、データ数は 1024 個でパーソナルコンピュ
ータに取り込み、周波数分析のデータとした。

3．実験結果と考察
小型圧力変換器で取込んだ壁面静圧データを使フーリエ変換を行い周波数成分 f を調
べ比較した。レイノルズ数 $Re=\nu \cdot C/\nu$ は、案内翼弦長 C を代表長さに取り、入口案内翼通過の
最小面積（スロート部）とオリフィス流量計より測定した流量より算出した案内翼スロート部
における代表流速 ν、空気の動粘性係数 ν を用い定義した。ストロフ数は $St=f \cdot C/\nu$ で定
義した。また、図中の記号は案内翼の種類と α で実験条件を表している。旋回強さ m は St. 1
における角運動量と軸方向運動量の比から定義した。

3. 1 直管部速度分布
図 2, 図 3 に直管部 St. 1 にお
ける速度分布を示す。図 2 は翼弦
長 $C=50$mm の場合を示す。 (a) は軸
方向速度分布を、(b) は旋回方向
速度分布を示す。同様に図 3 は翼
弦長 $C=100$mm の場合の (a) は軸方
向速度成分、(b) は旋回方向速度
分布を示す。図中 Um は断面平均
軸方向速度、w は軸方向速度、w
は旋回方向速度、R_0 は直管部半
径 61mm、r は 3 孔ピトーパ管の測定
半径位置を示す、軸方向速度分布
を見る限り翼弦長による影響は
出ていない、旋回方向速度分布を
比較すると、w/Um の最大の位置
は翼弦長に関係なく案内翼取付
け角度が大きくなるに従い、外壁
方向に移動して行く。$\alpha=50^\circ$
を過ぎるとより外壁の影響が非
常に強くなり最大位置は外壁近
傍に移動する、旋回方向速度は α
$=30^\circ$ までは翼弦長に関係なく同
じだが、40° を過ぎると翼弦長が

Download service for the GTSJ via 54.70.40.11, 2020/04/05.
短い C=50mm の方が大きな価を示すようになる。ここでは掲載していないが同様に実験したC=70mm の場合は、この 2 つの分布の間の値を示している。また、翼弦長に関係なく α =50° を越えると案内翼後方で不安定流れが生じている。

3. 2 取付け角度と旋回強さ

図4 に翼弦長の異なる 3 種類の平板翼の旋回強さ m と案内翼取付け角 α の関係を示す。取付け角は半径方向の角度を 0° とした。角度ごとの旋回強さを比較していくると、α =30° まではほぼ同じ値を示しているが 40° を越えると翼弦長が短い方が若干旋回強さが大きくなっている。図2、図3 で示した直管部速度分布の旋回速度成分が翼弦長の短い方が大きくなっておりからも判断できる。取付け角が同じで 3 種類の翼の半径方向に対する後緑位置が同じでも旋回強さの値が異なるのは、流出角に違いがあるからと考え、円形翼列を直線翼列に等角写像を用い変換し流出角を計算すると流出角に数度の差がでていた。また、旋回強さが 1.5 を超える α =50° 以上では不安定な流れが完全に生じている。

3. 3 変動の発生周波数

図5 に翼弦長 C=50mm, 100mm 案内翼取付け角度 α =50°, 60° の場合の発生周波数 f とスロート部平均流速 Uw の関係を示す。発生周波数はハブ側壁面静圧孔の半径位置が一番小さい P3 の圧力を用い高速フーリエ変換を行う発生周波数を算出した。スロート部流速は実験装置出口に設けた円錐弁により出口面積を調整し流速を変化させ流速を変えた。発生周波数は流速に比例し速くなれば高くなっている。同じ取付け角度では翼弦長が短い方が高い周波数になり、同じ翼弦長では案内翼取付け角度が小さい方が高い周波数を発生させている。

図6 に翼弦長 C=50mm, 100mm 案内翼取付け角度 α =50°, 60° の場合の St 数と Re 数の関係を示す。St 数は各実験条件では一定の値を示す。翼弦長が短いほど取付け角に対する St 数の差が小さく、スロート部の流速が同じでも発生周波数の差が翼弦長が短いほど小さくなっていることが図5 からも分かる。

4. まとめ

円形翼列後方付近に発生する周期性を持った不安定な流れについて、翼弦長の違う 3 種類の平板翼を
使い実験を行った結果次のことがわかった。
この実験条件の場合、入口案内翼の形状が平板翼になっても今まで使用してきたNACA747A-015翼型と
同様に不安定現象は発生し特定周波数を持つことがわかった。また、翼後継位置が同じ半径位置の場合
翼弦長を2.5倍まで変えても発生した不安定現象は大きく変わらないことがわかった。翼弦長が短いほど
発生周波数が高いこと、旋回強さは0.15を越えた場合確認に不安定流れが発生することが分かった。

5. 参考文献
(1) 内田博他5名，自動車用100WCGT圧縮機の開発，日本ガスタービン学会誌 21-84(1994), 83-89.
(2) 吉川晴夫・高倉行行・住吉村司・西村勝彦・筒井康賢，入口案内翼後流に発生する不安定流れ，
第9回ガスタービン秋季講演会（松江）論文集(1994.11). 221-227
(3) 高倉行行・住吉村司・吉川晴夫・西村勝彦・筒井康賢，入口案内翼後方発生する不安定な流れ
（心柄の影響），日本機械学会東北支部30期講演会論文集(1995.3). 35-36
(4) 高倉行行・吉川晴夫，入口案内翼後流に発生する不安定流れ（案内翼幅の影響），第11回ガス
スタービン秋季講演会（宮崎）論文集(1996.11). 19-22
(5) 高倉行行・吉川晴夫，入口案内翼後流に発生する不安定流れ（案内翼弦長の影響），第12回ガ
(6) Takama N. and YOSHIKI H., “A Study of Unsteady Flow Induced by Annular Cascade”,
PWR-Vol.34, 1999 International Joint Power Generation Conference, pp559-564
(7) 高倉行行・吉川晴夫・西村勝彦，円形翼列周りに発生する不安定流れ（翼音防止タブの効果），
第15回ガスタービン秋季講演会（北九州）論文集(2000.11). 175-180
(8) 和田光真・高倉行行・吉川晴夫・加藤千幸・飯田明由，円形翼列に生じる不安定流れのPIV計測，創立
30周年記念ガスタービン講演会講演論文集(2002.5). 43-46
二次元翼列・翼まわり流れにおける衝撃波振動現象と圧力変動

*高橋幸平（東京都立科学技術大学大学院）
白鳥敏正（東京都立科学技術大学）

Experimental Study of Shock Wave Fluctuation and Pressure Fluctuation on an Symmetrical Airfoil and Cascade in Transonic Flow.
Kyohei TAKAHASHI, Toshimasa SHIRATORI

1. まえがき

風・超音速領域で作動するファン・圧縮機などの翼列において翼間に衝撃波が発生し、この衝撃波を伴う流れの非定常現象は時に問題となることがある。その一つとして遷音速流れにおける衝撃波と翼面境界層の干渉が起因となり衝撃波の根元での剥離の発生などを原因として発生した圧力変動が、衝撃波を伴う流れによって振動を継続させる衝撃波振動現象がある。これまでにも衝撃波振動の関連の減少に関して、実験的、理論的そして数値解析的研究がなされてきており、主に定性的側面を中心に調べられている(1), (2)。著者は流れ方向の衝撃波挙動の実測において翼を置いて、矩形流れ内に置かれた対称円弧翼(3)、近似的2次元翼列(4)について衝撃波変動、後継でのく離境界層の変動（以下、後流変動と言う）の関連性に着目した実験的研究を行ってきた。なお最近、森田ら(5)は、単独翼のケースについてCFD計算と線形安定性解析を行い、矩形流れ内単独翼の衝撃波自励振動現象がKelvin-Helmholz不安定に因るものであることを示しているが、主流方向周波数についてはなお問題として残っている。

さて本研究ではこれまでの研究の継続として、実験における翼枚数を3枚から5枚へと増し、かつ測定部上下壁を直線形状から曲線形状へ変更する事で、各翼列間での時間平均的流れ場の同一性を高め、直線翼列としての周期性改善を図り、前記翼列での衝撃波自励振動の計測を行なった。また衝撃波変動が起きる流れ場において衝撃波変動を支配する要因の一つとして衝撃波後方の圧力の濁乱が挙げられるので、今回、衝撃波変動が発生している流れ場において、衝撃波後方の非定常圧力を計測し衝撃波変動と圧力変動の関係を調べることとし、その第一段階として、翼列に替って現象の単純な矩形流れ内に置かれた単独翼の場合について行った。

2. 実験装置と実験方法

本実験では単独翼と30°の前進を含む5枚翼列と2つの実験模型を使用している。両翼模型を用いた実験において、全体的な流れ態は流入マッハ数M_mと背圧比P_bによって決定される。背圧比P_bは集合無压比p_0と測定部後方壁面静圧p_hとの比であり、測定部流れ後の第二スロートの高さを流れの断面積を変化させp_0を変化させて背圧比を調整した。また単独翼において、静圧プローブで衝撃波後方空気の非定常圧力p_tを計測し、前方全圧p_0で無次元化したP_tを用いて結果を表している。

計測部における(X,Y)座標系は、翼の前線を原点とり主流方向Xを翼弦長で無次元化したXをもち、高さ方向Yを翼間流路高さで無次元化したYをもって示す。曲線状上下壁の形状は$p_0=0.700$の場合について第2・3流路中央流路が時間平均的に同一となるような流路壁形状を数値流体計算により決定した。非定常圧計測のために使用した静圧プローブは、内部に圧力
センサーが埋め込まれた外径3mmのもので、最大応答周波数は約5kHzである。

3. 結果と考察
図1に、これまでの直線状上下壁の場合と今回の曲線状上下壁の場合における流れ場全体を瞬間シュリーレン画像で示したものである。直線状上下壁の場合の様子に比べ、曲線状にしたことで衝撃波発生形状が各流路でより類似した形状を示している。

図1 瞬間シュリーレンによる翼列流れ場の様子

図2にラインスキャンカメラでとられた衝撃波の振動の様子を、直線状上下壁・曲線状上下壁それぞれについて示した。$P_s=0.720$の図を示したが、明らかに曲線状上下壁にしたことで明確な周期性のある衝撃波変動が発生していることがわかる。

図3に直線状上下壁および曲線状上下壁の場合について、背压比でまとめた平均衝撃波発生位置を示した。図3aから直線状上下壁では第1流路における近似曲線の傾きが他の流路のそれと違っており、第3流路と第4流路の近似曲線が重なってしまっているのがわかる。ここで2次元翼列流れという意味では、各流路間の衝撃波発生位置や流線などの翼間周期性が同位置であることが理想である。図3bから曲線状上下壁では各流路の近似曲線の傾きがほぼ同様となっていること、さらに上下壁に隣接する第1、第4流路では差はあるものの、第2、第3流路においてはその差が小さくなっていることがわかる。

以上より各流路の発生位置を同一背圧比に対して同一位置にするることは出来なかったが、上下壁に隣接する部分を除けば翼列の時間平均流れとしての近似度は直線状壁の場合に比べ改善
されたと言える。

次に図 4 で平均衝撃波発生位置をまとめた第 2、第 3 流路の衝撃波の卓越周波数を、また、図 5 で平均衝撃波発生位置に対する衝撃波振動の振れを示す。図 4 から衝撃波が \(X_r = 1.0 \) 付近すなわちほぼ翼後縁を境に 3 つの周波数帯に分類されることがわかる。また図 5 を見ると平均位置が翼後縁に近づくにつれて振幅が小さくなり \(X_r = 1.0 \) 付近で最小となっているのが見てとれる。図 4、5 をまとめると、衝撃波が翼間で発生している \(X_r < 1.0 \) で、周波数は 1.0kHz で、その時振幅は大きい。衝撃波の根元がほぼ後縁に到達した \(X_r = 1.0 \) で、周波数は 0.6kHz で、振幅は最小となる。衝撃波の根元が後縁より後方となる \(X_r > 1.0 \) で、背圧比の減少と共に周波数は増加し、振幅はやや大きくなる。Lee(6)によれば衝撃波変動の支配周波数は後方から上方へ伝播してくる。
圧力場乱の衝撃波までの到達時間に影響を受ける。よって一因として本実験も食違い角により生ずる上下翼の後続と衝撃波発生位置によって周波数が3つに分けられると考えられる。

衝撃波変動と圧力変動の関係を調べるため、はじめに単独翼における衝撃波後方の非定常静
圧と衝撃波変動の同時計測を行った。図6は背圧比$P_b=0.78,0.68$における、衝撃波および後流
の変動の周波数と静圧測定位置を主流方向に変化させて計測した圧力変動の周波数を比較した
ものである。衝撃波は発生していない$P_b=0.78$においては、静圧測定位置よりず圧力変動の
周波数と後流変動の周波数は一致していることがわかる。しかし衝撃波とその振動が発生して
いる$P_b=0.68$の場合、静圧測定位置が衝撃波発生位置（$X_s=0.7〜0.9$）の後方である場合は衝撃
波の周波数と圧力変動の周波数はほぼ一致するが、衝撃波前方では圧力変動の周波数は衝撃波
の周波数とは異なることが確認できた。

上記の結果と過去に本研究室が行った結果の一部を図7に模式的にまとめた。完全にecho
クと流れ脈に衝撃波が発生している場合、衝撃波の変動周波数f_0と後流の変動周波数f_wおよび
衝撃波後方の圧力変動の周波数f_{pt}は等しく、境界層の変動周波数f_bはまったく関連していない。
また衝撃波より前方における圧力変動の周波数f_{pt}は風洞特性としての翼を配置しない場合の
風洞の周波数f_{pt}と等しい。一方、流れが完全に亜音速である場合、後流の変動周波数f_w、圧力
変動の周波数f_{pt}および境界層の変動周波数f_bは等しい。

衝撃波変動と圧力変動の関係を考えるため、衝撃波が一次元流れで正弦波振動をしている場
合の、衝撃波位置とその移動速度および衝撃波前方と後方の圧力比P_bの関係を図8aに示した。
図 6 静圧計測位置の違いによる圧力変動と衝撃波変動の卓越周波数の関係

図 7 流れ場全体の支配周波数の関係

図 8a 正弦波振動（計算）
図 8a 衝撃波振動波形（実験）

（$P_x=0.71$、静圧計測位置 $X_c=0.88$）

この図からも明らかのように衝撃波の直後においては、衝撃波移動速度が負の最大となる瞬間に、衝撃波直後静圧は最大となる。同様にして実験結果をまとめたのが図 8b である。この図は
背圧比 $p_b = 0.71$ で静圧計測位置 $X_s = 0.88$ で計測した P_s であり、平均衝撃波発生位置の直後である。実験結果から相対速度が負の最大となる瞬間と圧力比 P_b が最大となる時間の差をその時の振動周期を用いて位相差として求めると、平均で3°とほぼ0であった。

最後にこのようにして求めた位相差は衝撃波後方での静圧計測位置に対して図9に示す。衝撃波の後方では、非定常静圧の位相差が正となっていることがわかる。

4. 結び

測定部上下壁を直線形状から曲線形状へ変更する事で、直線翼列としての時間平均的流れ場の周期性改善を試み、改めて翼列での衝撃波自励振動の挙動を調べた結果
1. 瞬間シュリーレン画像および平均衝撃波発生位置の比較から、曲線状上下壁にしたことにより翼列としての近似度は改善されたことが確認できた。
2. 衝撃波の周波数帯が衝撃波の発生位置により3つに分類されることが確認された。
3. 衝撃波変動と圧力変動を同時に計測することができた。

今後の課題としては、静圧計測の範囲をさらに後方に拡大した計測が行われるように改良し、翼列における衝撃波振動と圧力変動の関係を調べる予定である。

参考文献
(1) 白鳥敏正、翼列流れにおける衝撃波振動現象、日本流体力学会誌「ながれ」、第22巻、第1号、51－57．2003．
(2) 松下政裕ほか、「遷音速流中の対称円弧翼における衝撃波変動」、日本機械学会論文集、68巻、B66号、平成14年、338－343．
(3) 岩本幸治ほか、「2次元超音速翼列に生じる衝撃波が関連した流体力学的不安定現象に関する研究－第1報 粘性流れに対する数値解析－」、日本ガスタービン学会誌、Vol.30、No.1、55－62、2002．
(4) 松下政裕ほか、「遷音速翼列間流路に生じる衝撃波変動に関する研究（翼間ながれ場の計測）」、日本ガスタービン学会誌、Vol.27、No.2、102－107、平成12年．
(5) 森田 良ほか、「遷音速ラーチク翼に生じる衝撃波の非定常挙動」、日本機械学会論文集、69巻、678号、B編、330－337、2003．
遷音速圧縮機翼列の翼間衝撃波変動に伴う翼面圧力変化

* 平野孝典 (拓大工) 森山哲 (拓大院)
藤原淳 (拓大院) 田中英徳 (東大名誉教授)
藤本一郎 (拓大工)

1. まえがき

ジェットエンジンなどの軸流機械に発生する翼列フラックは非常に危険な現象であり、フラック回避のためにはフラックマージンを大きく取る必要があるが、小型化や性能向上のためにはフラックマージンをできるだけ小さくすることが要求される。しかし、性能向上のために翼の薄翼化がなされると、剛性低下により翼列フラック発生の危険性が増大する。また、遷音速翼列では翼間に衝撃波が発生し、翼面上を衝撃波が変動すると、衝撃波前後の大きな圧力差により翼には大きな非定常空気力が誘起されるため、翼列フラックに大きな影響を及ぼすと考えられる。そのため、衝撃波変動特性を明らかにすることが必要である。

著者らは従来から一翼振動法による非定常空力特性の解析を行っており、本研究はその一環として、一翼振動時の衝撃波変動特性を明らかにしようとするものである。具体的には、一翼振動時の翼列翼列面側壁転翼に貼付した圧力センサによる非定常翼面圧力計測、および高速度像撮影システムにより翼間衝撃波の可視化を行い、非定常翼面圧力と翼間衝撃波変動との関係、および翼振動数の影響について解析を行う。

2. 実験装置

2.1 遷音速風洞

本研究で用いた遷音速風洞の概観図を図1に示す。本風洞は、密閉回路式で連続運転が可能である。作動流体は、空気で測定部におけるマッハ数 M は 0.4 〜1.2 の範囲で任意に設定可能である。測定部寸法は、幅 100 mm、高さ 200 mm である。また、衝撃波可視化手法としてシュリーレン光学法を用いており、測定部側面の真下に直径 200 mm のシュリーレンガラスを、他方にシュリーレン反射鏡を取り付け、翼間衝撃波の可視化を行う。

2.2 翼列および供試翼

図2に翼列の模式図を示す。翼列は、二次元圧縮機直線翼列で、翼列中央の振動翼と8枚の静止固定翼、計9枚の翼で構成されている。翼列条件は、食い違い角 G=30°、迎角 α=7.5°、ソリディティσ=1.68である。
図3 圧力測定翼

図3に本研究で用いた供試翼を示す。供試翼は、翼弦長67.25 mm、翼幅99 mm、翼厚比8%、反り角10°の二重円弧翼である。実験では、ねじり加振機により翼列中央の翼一枚のみを翼弦中心をねじり軸として段振幅2°でねじり振動させる。この振動翼（0番翼）前面には、図中に示す175%、280%、385%翼弦長位置に計3枚、また、振動翼腹面側の隣接静止固定翼（-1番翼）の背面80%翼弦長位置に1枚の圧力センサ（センサ④）が直接貼付されている。この翼面圧力センサは超小型半導体圧力トランスデューサ（豊田工機製TM-1Fa）で、受圧部寸法は長さ1 mm、幅0.5 mmであり、センサの1次共振周波数は100 kHz以上である。

3. 実験方法

図4に計測システムの概略図を示す。サンプリングデータは翼面圧力（センサ①〜④）、翼振動変位、シュリーレン光学装置により可視化された衝撃波画像である。ねじり加振機は、駆動軸1回転につき、振動翼を振幅2°で8周期ねじり振動させる。ねじり加振機の駆動軸にはロータリエンコーダが取り付けられており、駆動軸1回転につき1600個のパルス、つまり、翼振動1周期に200個のパルスを出力する。この場合、ロータリエンコーダの出力パルス間隔は、翼振動位相1.8°（=360°/200）に相当する。パルスカウンタは、ロータリエンコーダからの出力
パルスをカウントし、あらかじめ設定したパルス数（設定パルス数）に到達する毎に、サンプリングパルスを出力する。このサンプリングパルスを用いた計測により、振動翼（0番翼）の振動位相と同期した翼面圧力と画像を同時サンプリングすることが可能である。翼面圧力のみを計測する場合は、翼振動1周期あたり200個のデータを5周期分サンプリングし、信号強化を行った。

次に、衝撃波撮影は翼振動1周期中に50枚の画像を撮影することにしたが、可視化撮影システムは、衝撃波画像1枚を撮影して保存するまでの1/15[s]の時間がかかるため、連続撮影を行うことはできない。そこで、衝撃波撮影を行う場合、あるいは非定常翼面圧力計測と衝撃波撮影を同時に行う場合には、衝撃波変動が翼振動に伴う連続した周期的現象であることに着目し、多周期にわたるデータサンプリングを行い、翼振動1周期分のデータを構成する方法を用いた。一例として、8周期分のデータサンプリングから1周期分のデータを構成する場合の計測手法を図5に示す。この場合は、パルスカウンタの設定パルス数を225に設定することにより、翼振動1周期毎に45°の位相差を持ってデータサンプリングが行われることになる。これらを並べると、図5の下の図に示すように翼振動1周期に対する連続データを構成することができる。翼振動数を高くする場合には、前述したように、撮影時間間隔が1/15[s]以上になるように設定パルス数を大きく取る必要がある。

4. 実験結果および考察
翼面圧力センサ設置位置付近に翼間衝撃波が生じる、上流マッハ数M=0.88の場合について、翼振動数f=1.3Hz〜50Hzの範囲で実験を行った。無次元振動数で表すと、k=0.00175〜0.0674である。無次元振動数kは上流速度U∞、翼弦長c、角振動数ω（=2πf）を用いて、式(1)で与えられる。

\[k = \frac{\omega c}{U_\infty} = \frac{2\pi fc}{U_\infty} \]

図6は、k=0.00175（f=1.3Hz）の場合の、ω=0、π/2、π、および3π/2における衝撃波瞬時
画像である。0番翼背面側の衝撃波を見ると、0番翼の迎角変化に伴い、流れ方向の位置が変化している様子が見て取れる。例えば、ωt=π/2では衝撃波位置は最も上流側へ、ωt=3π/2では最も下流側へ移動していることがわかる。

4-1 非定常翼面圧力

図7に、無次元振動数k=0.00742 (f=5.5 Hz)、k=0.0136 (f=10.1 Hz)、k=0.0281 (f=20.8 Hz)、k=0.0413 (f=30.6 Hz)、および k=0.0674 (f=50 Hz) における非定常翼面圧力波形を示す。横軸は0番翼の振動位相ωt、縦軸は式(2)で与えられる圧力係数Cpである。また、図中の記号s1〜s4は、各々センサ①〜④を示す。

\[C_p = \frac{p - p_\infty}{p_1 - p_\infty} \] (2)

ここで、p1：翼列上流全圧
p_\infty：翼列上流静圧
p：翼面圧力

k=0.00175の図を見ると、振動翼背面の圧力(s1, s2, s3)は、ωt=0〜πの範囲では、衝撃波がセンサより上流側へ移動するため高くなり、ωt=π〜2πの範囲では衝撃波がセンサより下流側へ移動するために低くなっている。ただし、s1についてはωt=π〜2πの範囲で圧力が再び高くなってしまおり、翼振動1周期に2山の変動が見られる。この理由については、現在のところ明確ではない。-1番翼（振動翼の腹面側接翼）背面のs4の圧力は、s1〜s3の振動翼背面の圧力変動に対してほぼ逆位相となっており、衝撃波が振動翼の背面側と腹面側とは逆位相で変動していることがわかる。無次元振動数が高くなってしまっても同様のことが言える。衝撃波の通過による圧力の変化はかなり急峻であるが不連続的な変化とは言えない。これは、衝撃波の厚み、境界層内で圧力がなまることなどの影響によるものと考えられる。

各圧力波形の圧力上昇時を衝撃波の上流側への通過開始点、圧力減少終了時に衝撃波の下流側への通過終了点と定義して衝撃波の移動する様子を示すと、図中の破線のようにになる。振動翼背面（s1〜s3）のこれらの破線の傾きに、無次元振動数による違いはほとんど見られず、本実験における無次元振動数の範囲では、衝撃波はほぼ翼振動に追従した変動をしていると言える。ただし、例えばs2とs4の波形を見ると、無次元振動数の違いにより位相に差異が生じていることがわかる。
4.2 頬圧変動の振幅と位相特性

図8に、非定常翼面圧力をフーリエ分析して求めた1次成分と2次成分の振幅及び翼振動に対する位相差を無次元振動数kに対して示す。1次成分の振幅は、振動翼では、センサ①、センサ③、センサ②の順に大きい。これは、衝撃波の平均位置がほぼセンサ②の位置にあるためであると考えられる。1次成分の位相は、センサ③と①でほぼ0°で、kの影響はほとんど見られない。センサ④はそれらに対してほぼ180°の位相差となっており、衝撃波が逆位相で変動していることを示している。また、kの増加による位相遅れの増加が見られる。センサ①の位相は、センサ②と③とは大きく異なる。
異なっているが、これは図7の圧力波形で見られたように、翼振動1周期中に2山の変動があるためである。2次成分では、センサ①の振幅は1次成分とほぼ同程度の大きさであり、2山変動の影響が見られるが、他のセンサでは1次成分に比べてかなり小さくなっている。また、位相については全てのセンサではほぼ90°となっており、kの影響はほとんどない。

4-3 衝撃波による翼面圧力の変化

図9に、k=0.00175及びk=0.0674における翼振動1周期中の非定常翼面圧力および衝撃波位置を示す。ここでは、非定常翼面圧力計測と衝撃波撮影を同時に行った。横軸は翼振動位相ωt、縦軸は圧力係数Cpおよび翼弦長位置 [%]である。

図から、翼間衝撃波は無次元振動数によらず、同じように変動していることがわかる。また、衝撃波変動と翼面圧力変動とはほぼ対応している。しかし、無次元振動数の増加により、衝撃波変動と圧力変動ともにわずかではあるが位相遅れが生じている。

5. まとめ

翼面に貼付した圧力センサを用いた非定常翼面圧力計測と衝撃波の可視化撮影を行い、翼面上での衝撃波変動と圧力変動について考察した。以下、得られた結果をまとめる。

(1) 翼面に貼付した圧力センサにより、衝撃波変動に伴う圧力変化を計測することができた。また、振動翼背面3箇所の圧力波形から、衝撃波変動の様子を推測することが可能であった。

(2) 本実験における無次元振動数の範囲内では、翼面圧力波形から推測される衝撃波の変動は、無次元振動数によらず、翼振動に追従している。

(3) 振動翼腹面側接翼の衝撃波変動により生じる圧力変動は、振動翼背面の圧力変動に対してほぼ逆位相である。このことは、圧力をフーリエ分析した1次成分の位相からも確認された。

(4) 圧力センサを衝撃波が通過することにより生じる圧力変化は不連続的ではなく、急峻ではあるが滑らかとなる。これは、衝撃波に厚みがあることと境界層内で圧力がなまることによるものと考えられる。

参考文献

(1) 平野, 藤本, 「遷音速圧縮機翼列の一翼振動時の非定常空力特性」, 第25回ガスタービン定期講演会講演論文集,(1997)

(2) 後藤, ほか6名, 「遷音速圧縮機翼列に生じる翼間衝撃波の一翼振動時における変動特性」, 第15回ガスタービン秋季講演会講演論文集,(2000)
部分負荷状態におけるタービン動翼ミッドスパンの非定常流れ

* 松沼 孝幸, 緑井 康賢 (産業技術総合研究所)

1. 結言

高性能の小型ガスタービンを開発するために、低レイノルズ数域での低圧タービンの空力特性が重要視されている(1)。産業用小型ガスタービンでは、翼の小型化と、タービン入口温度の高温化による流動流体の粘性係数の増加によって、レイノルズ数が低下する。例えば、旧工業技術院で開発を行った300kWセラミックガスタービンのレイノルズ数は10^4オーダであり、従来のガスタービンと比較して一桁以上小さい。また、航空用小型ガスタービンでは、高度で飛行する際に空気密度が低くなり、レイノルズ数が低下する。Schulteら(2), Murawskiら(3), Bonsら(4)は、低レイノルズ数域では翼負圧面側の後半部分で流れが剝離して、損失が急激に増加することを明らかにした。前述の研究は、全て静止直線翼列での実験であり、回転する環状翼列を用いた実験は、計測の難しさから報告例が少なく(5)(6)、特に低レイノルズ数域では皆無である。本研究では、環状翼列を用いて実際のタービンに近い3次元非定常流れを捉えることに取り組んでいる。これまでは、設計運転状態の流れ(7)を測定したが、タービン翼列は、起動時、アイドリング時、出力調整時などに部分負荷状態で運転されるため、設計点以外の特性を把握することも重要である(8)(9)。そこで本報告では、低レイノルズ数域で作動するタービン動翼の部分負荷特性を調べた。レーザードップラ流速計(LDV)によって、タービン動翼のミッドスパン(平均径)の位置での非定常流れを測定し、部分負荷状態におけるインシデンス(流入角)の影響を考察した。

2. 実験装置と方法

2.1 風洞と翼形状

図1に実験に用いた環状タービン翼列風洞を示す。本風洞は、大気吸込型で測定部の最大流速矢は30m/sである。測定部には、1組の静翼・動翼から構成される単段タービンが設置されている。表1に、単段タービンのミッドスパンにおける仕様を示す。静翼入口および動翼出口での絶対流れ角0deg(旋回なし)，ミッドスパンでの反動度0.4，流量係数0.5，負荷係数1.2となるように設計した。

2.2 実験条件

動翼出口の相対流れを基準としたレイノル
ズ数 \(R_{\text{ext},RT} \) を \(3.6 \times 10^4 \)（軸流速度 4.46m/s）に調整し、動翼の回転数を、設計回転数（402rpm）の50%から140%の範囲で10%毎に変化させた。表2に、動翼回転数とインシデンス（動翼入口流れの実験流入角と設計流入口角の差）を示す。回転数の変化に応じて、インシデンスが -43.6degから+32.7degの部分負荷状態となっている。

2.3 実験方法

ミッドスパンの静翼出口直後（動翼上流）から動翼下流までの流れを、TSI社製2次元LDVによって測定した。測定位置を図2に示す。静翼に対するトラバースは、周方向32点（静翼1ピッチ分、実線で示した格子）、軸方向46点（間隔2mm）、計1,472点である。各測定点において、10,000組のLDVデータと動翼位置データ（動翼エンコーダ信号は1,800パルス/回転）を取り込んだ。動翼1ピッチを29分割し、それぞれの動翼位置に対してデータを位相固定平均して、絶対座標系から速度、流れ角、乱れ度などを測定し、動翼回転数から求めた周方向速度成分を加えて、相対座標系での流れを解析した。なお、周方向へのトラバースは静翼1ピッチ分のみを行ったが、以下の解析では流れをわかりやすくするために、静翼2ピッチ分（図2の実線と波線の格子）のデータを表示してある。

3. 実験結果と考察

3.1 各部負荷状態における非定常流れ（相対座標系での流れの観察）

図3に、非定常相対速度の分布を示す。相対速度は、最下流位置 \(Z/\text{Cav},RT=1.604 \)での時間平均相対速度 \(V_s \)で無次元化してある。この図は、インシデンス \(i = +23.2 \text{ deg} \)（回転数70%）、 \(i = 0 \text{ deg} \)（設計回転数）、 \(i = -43.6 \text{ deg} \)（回転数140%）の3つの負荷状態において、動翼と静翼の相対位置の違う4時刻（\(r=1/32T_{XZ}, 9/32T_{XZ}, 17/32T_{XZ}, 25/32T_{XZ}, T_{XZ} \)は相対座標系で静翼が1ピッチ移動する時間）での流れを示している。回転座標系での観察のため、時間の縦軸とともに静翼が上から下に移動していく。動翼と静翼の相対位置の違いにより、動翼まわりの流れが周期的に強まり_steつ変動が発生する。この速度変動は、インシデンスが大きくなるほど増大する。動翼負圧面側の流れは、翼後半で剥離している。インシデンスの増加に伴って、剥離開始位置が上流側に移動し、剥離の大きさも増大する。動翼下流では、動翼のウェークと静翼のウェークが干渉して、周期的にウェーク幅が変化する。インシデンスが大きくなると、動翼のウェーク幅が急激に増大している。一方、負のインシデンスでは、動翼負圧面側の剥離は減少するが、動翼正圧面側の前緣付近に新たな剥離が起こる。

図4に、各部負荷状態における非定常相対速度ベクトルの分布を示す。動翼回転数の違いによって、動翼入口での流れの流入する角度が変化している。動翼負圧面側の後半部では、剥離の影響による低速領域（短いベクトル）が観察できる。
図3 各部分負荷状態における非定常相対速度の分布（相対座標系）

図5に、各部分負荷状態における非定常乱れ度の分布を示す。乱れ度は、最下流位置での時間平均相対速度 V_2 で無次元化してある。静翼ウェークにより発生した高い乱れ度の領域は、動翼前縁部で切斷される。動翼周りでは、正圧面側で速度が遅く、負圧面側で速度が速いために、静翼ウェークは動翼内部で渦曲しながら下流に移動していく。動翼負圧面側の後半では、静翼のウェークと動翼の剥離流れが干渉している。インシデンスが増加するほど、静翼ウェークの歪みが大きく、乱れ度が増大して、動静翼干渉が増している。

3.2 動翼出口の非定常流れ（相対速度のピッチ方向分布）

図6に、各部分負荷状態における動翼出口（$2/C_{ax,by} = 1.115$）における非定常流れのピッチ方向分布を示す。図中の太い実線は、時間平均相対速度を示す。インシデンスが大きくなるほど、動翼ウェーク（翼後縁の低速領域）が増加する。特に、正のインシデンス $i = +23.2$ deg（図6(a)）では、翼負圧面側の速度欠損が著しく、大規模な剥離が起こっている。また、4時刻における非定常速度分布から、静翼ウェークの影響によって、動翼出口の相対速度が周期的に変動していることが分かる。
図 4 各部分負荷状態における非定常相対速度ベクトルの分布（相対座標系）

速度変動（各ピッチ方向位置での最大値と最小値の差）を、図中に2点線で示す。速度変動は、
動翼負圧面側で大きい。負圧面側の最大速度変動は、インシデンス \(i = +23.2 \, \text{deg} \) の時は 0.20（基準速度 \(V_2 \) の 20% の速度変動）、\(i = 0.0 \, \text{deg} \) の時 0.17（17%）、\(i = -43.6 \, \text{deg} \) の時 0.13（13%）であり、
インシデンスが大きくなるほど速度変動が増大している。

3.3 動翼ウェークのエネルギー消散厚さ

図 7 に、動翼出口のエネルギー消散厚さ \(\delta \) とインシデンス \(i \) の関係を示す。エネルギー消散厚さは、損失に相当するもので、動翼出口 \((Z/L_{out}=1.115) \) のピッチ方向速度分布（図 6）から、動翼ウェークの速度欠損領域（時間平均値）に図 7 中の計算式を適用して算出される。インシデンスが \(-33.1\, \text{deg} \) から \(+9.2\, \text{deg} \) の範囲では、インシデンスが増加するほど、エネルギー消散厚さが徐々に増加する。インシデンスが \(+9.2\, \text{deg} \) より大きくなると、エネルギー消散厚さが急増する。この原因は、
図 3(a)と図 6(a)で見たように、動翼負圧面側で大規模な剥離が発生するためである。一方、インシデンスが \(-33.1\, \text{deg} \) 以下でも、エネルギー消散厚さはわずかに増加する。この原因は、図 3(c)で見た
図 5 各部分負荷状態における非定常乱れ度の分布（相対座標系）

図 6 動翼出口での非定常相対速度のピッチ方向分布（軸方向位置 Z/C_{ax,RT} = 1.115）
ように，動翼正圧面側の前線付近で剥離が起こるためである。エネルギー消散厚さは，設計インシデンス \(i = 0.0 \deg \) の時は 0.088（動翼ピッチ \(S_{ax} \) の 8.8%）であるのに対して，正のインシデンス \(i = 32.7 \deg \) の時には，2.24 倍の 0.197 に増加する。一方，負のインシデンス \(i = -32.7 \deg \) の時には，設計点の 0.77 倍の 0.068 に減少する。

4. まとめ

低レイノルズ数域における縦状ターピン動翼のミッドスパンでの非定常流れを，レーザードップラ流速計（LDV）によって測定した。動翼速度を設計回転数の 50%から 140%の範囲で変化させることにより，動翼インシデンスが -43.6deg から+32.7deg の部分流体状態にて，

動翼周りの非定常流れがインシデンスの影響でどのように変化するかを考察した。

① インシデンスが大きくなるほど，動翼の剥離およびウェークが大きくなった。

② 動静翼干渉による速度の周期変動は，インシデンスの増加に伴って増大した。

③ エネルギー消散厚さ（損失に相当）は，インシデンスが+9.2deg 以上になると急増した。

参考文献

吹き込みによる遠心圧縮機のサージングの制御

*朝賀裕一朗（法大院）、佐藤邦明（キャノン）
辻田浩歩、水木新平（法大）

1. まえがき

ターボ形機械では低流量で性能を低下させる原因に旋回失速とサージングという不安定現象があげられ、流量を設計点から徐々に低下させると、まず旋回失速が起こり、更に流量を低下させるとサージングを発生する。旋回失速は一般に羽根車入口シャウラウド側やディフューザ入口で発生するが、その失速セルは逆流を伴う旋回流である。一方、サージングが発生すると、圧縮機系内の流れは時間的に順流と逆流を交互に繰り返すため軸方向の振動が発生し、最悪の場合に圧縮機の破壊をもたらす。また、サージングは旋回失速と異なり、試験運転時には発生しなくても実際に配管すると発生する場合もあり、圧縮機を構成する管系システムの振動に対して考慮が必要がある。更に、高圧力比の場合に旋回失速が明確に現れずにサージングが発生する場合もあるので、近年の高圧力比化した圧縮機にとってはこれらの不安定現象の制御はますます重要となっている。本研究ではこのような観点より、圧縮機出口の流れを一部再循環させることにより、サージングを効果的に抑制することを試みた。

2. 実験装置

本研究では、吐き出し管から抽出された流量の一部を吹き込むために吸込み管内に装着する吹き込みノズルを製作した。実験は、吸込み管内に吹き込みノズルを装着しない場合（Normal型）と装着した場合（Injection型）の2種類について行い、性能特性を比較した。図1と図2に実験装置全体図および遠心圧縮機形状を示す。遠心圧縮機は、吸込み管、羽根車、羽根車帯ディフューザ、スクロールおよび吐き出し管で構成されており、出力18.5kWのモータで駆動され、回転数の制御はインバータ制御盤で行った。羽根車回転数は3600rpmである。羽根車は3次元オープン形であり、入口直径188.1mm、出口直径293.6mm、出口幅24.0mm、羽根出口角度が半径方向から30.0°の後方曲型である。羽根枚数は18枚で、ケーシングとのクリアランスは0.6mmである。また、ディフューザ
は幅 24.0mm の平行壁羽根なしである。
図 3 に吹き込みノズルを吸込み管内に装着した様子を示す。吹き込みノズルは直径 20.0mm
であり、その先端が羽根車入口シュラウド側の
上流から 5mm の位置になるように設置した。こ
れによって、吐出し管内の流量の一部を吸込
みノズル内羽根車入口付近までバイパスさ
せ、再循環させた。

3. 測定
流量測定は JIS B8301 の吸込み管および傾斜
型マノメータを使用した。吐き出し管出口に設
置された縄張りにより流量を制御し、設定流量
は縄張り全開から全閉までの 22 点である。
全圧測定は吐き出し管中央の位置で JIS 型ビ
トー管および多管型マノメータを用いて測定を
行った。
静圧測定には多管型マノメータを用いた。静
圧孔は図 2 に示す a～f 列に沿ってシュラウド壁
面に各 17 個あるが、測定は羽根車入口、ディ
フューザ入口および出口の位置する箇所で行っ
た。
ディフューザ入口および出口の流速流れ角の
測定には熱線流速計およびコブラ型ビトー管
を用いた。各々の測定位置は半径が 1.05 およ
び 1.37 である。
圧力変動測定には圧力変換器、アンプおよび
FFT アナライザを使用した。

4. 解析方法
全圧係数 \(\psi_t \) は以下の式で定義した。ここ
で、\(P_t \) 是吐き出し管における全圧、\(P_a \) は大気
圧、\(u \) は羽根車外周速度である。

\[
\psi_t = \frac{P_t - P_a}{0.5 \rho u^2}
\]

静圧係数 \(\psi_s \) は以下の式で定義した。ここ
で、\(\Delta P \) は各要素間における静圧の差である。

\[
\psi_s = \frac{\Delta P}{0.5 \rho u^2}
\]

流量係数 \(\phi \) は以下の式で定義した。ここで、
A は羽根車出口面積、Q は入口吸込み流量である。

\[\phi = \frac{Q}{Au} \]

5. 実験結果

5.1 吹き込み流量

図 4 に圧縮機出口の流れの一部を再循環させた吹き込み流量を示す。なお、縦軸は吹き込み流量の入口吸込み流量に対する割合を示す。

吹き込みノズルに取り付けられた絞り弁開度を一定としたため、吹き込み流量は高流量域では全流量に対して低い割合となり、低流量域では急激に高い割合となった。

5.2 静圧特性

Normal および Injection の両ケースにおける全圧係数 - 流量係数特性を図 5 に示す。

\(\phi = 0.00 \sim 0.10 \) の流量範囲まで Normal より Injection の方が高い数値を示し、明らかに低流量域での性能向上がみられた。これは、吐き出し管から吹き込まれる流体が全圧が上昇しており、このことが低流量域での全圧の上昇につながったためであり、さらに図 4 によると吸込み流量に対して吹き込み流量の割合が増加していることからも分かる。しかし、\(\phi = 0.11 \sim 0.22 \) の流量範囲では Normal と Injection に大きな差異はなく、また、吹き込み流量の割合も少ない。

5.3 静圧係数分布

図 6 に、羽根車入口を基準としたディフューザ入口 (= 羽根車出口) までとディフューザ出口までの静圧係数 - 流量係数特性を示す。

羽根車入口からディフューザ入口までの分布に注目すると、低流量域で明らかに Injection の方が高い結果が得られている。低流量域では、羽根車入口シュラウド側に存在する失速領域（失速セル）によって通過する流量を減らさせ、羽根車入口インデューサスロート部の流路面積の縮小をもたらす。しかし、本実験では吹き込みノズルを用いて直接その領域に流れ
を吹き込んだので、その逆流領域が縮小したと考えられる。その結果、インデューサスロート部の
有効流路面積が拡大し、羽根車出口流路面積との面積拡大率が Normal のときより小さくなり、羽
根車内のディフューザ作用が向上したためと思われる。また、羽根車入口からディフューザ出口ま
での分布でも、低流量域で Injection の方が高い結果を得られているが、図 7 に示すディフューザ
内の静圧係数分布の結果に注目すると、φ = 0.00 ～ 0.11 までは若干 Normal の方が高く、φ = 0.12 以
上では全く差異がない。これは大幅な抽出によってディフューザ内の静圧上昇が低下したためで
あり、従って、ディフューザには吹き込みによる静圧係数上昇には効果が見られない。
5.4 流速度分布および流出角度分布
図 8 と図 9 にディフューザ入口および出口における速度分布および周方向から測った流れ角度分
布を示す。なお、各図における横軸は熱線トラバース距離を流路幅で無次元化したものであり、0.0
はシュラウド側壁面、1.0 はハブ側壁面の位置を示す。
図 8(a)の速度分布を見ると各流量で Injection の Normal より低い分布になっている。全圧係数
は Injection が高いことから、吹き込みにより羽根車内の静圧係数上昇したことが分る。また、
最大全圧係数を示す φ = 0.06 ～ 0.07 付近から流量が離れるほど、流れはシュラウド側に偏った傾向

![Image]

図 8. ディフューザ入口における速度分布および流出角度分布

![Image]

図 9. ディフューザ出口における速度分布および流出角度分布
を示し、シュラウド側で剥離が発生していると考えられる。このことは、図8(b)の流れ角度分布図からも確認される。一方、図9(a)の速度分布は各流量でInjectionがNormalより高い分布をなしており、このことからもInjectionはディフューザ内の静圧の上昇に寄与しなかったことがいえる。また図9(b)の流れ角度分布では、θ=0.00～0.08の範囲ではシュラウドからハブまで大きな変化はないが、高流量域では流れがシュラウド側に偏っている。

5.5 周波数特性

羽根車入口、ディフューザ入口およびディフューザ出口において、低流量域で特に周波数特性の変化がみられたθ=0.00および0.01の結果を図10〜図12に示す。また、本実験では、図中にみら

図10. 周波数特性（羽根車入口）

図11. 周波数特性（ディフューザ入口）
図12. 周波数特性（ディフューザ出口）

35Hz 付近のピークは φ = 0.00 の図 10(a)、図 11(a) および図 12(a)に現れるためサージングを、図 10 および図 11 の 50Hz 付近および 70Hz 付近の小さなピークはディフューザ入口で発生した旋回失速、或いはディフューザ入口シュラウド側壁面付近の剥離による変動と判断した。

サージングについて、図 10～図 12 の Normal と Injection を比べると、Injection は 35Hz のピークを抑えるもの。また、同一流量におけるスクロールおよび吸出し管でも同様な結果が得られ、吹き込みはサージングを抑制したといえる。一方、ディフューザにおける旋回失速については、図 11 と図 12 を比較すると、50Hz および 70Hz の変動は抑えられておらず、入口での吹き込みによる旋回失速の抑制はあまり効果がないといえる。

6. 結論
本研究では吹き込みによる低流量域での旋回失速とサージングの制御を試みた。その結果、以下の結論が得られた。

(1) 低流量域で発生したサージングは吹き込みによって抑制された。
(2) 吹き込みは、低流量域での性能特性の向上に有効であった。
(3) 吹き込みは翼根部内での静圧向上に効果があったが、ディフューザ内の静圧向上には効果が無かった。
(4) 吹き込みはディフューザ内での旋回失速や剥離などの不安定性にも効果が無かった。

参考文献
1) 後藤信也、山口諭、中尾秀史、山口広、中村光也、ケーシングトリートメントによる過給機用遠心圧縮機の高作動域化に関する研究、第 49 回ターボ機械協会（神戸）講演会、2002、pp.127-132.
翼後縁部の加振による翼列フラッター能動制御の解析

*賀澤 順一 （東大院）
渡辺 紀徳 （東大工）

1. 緒言
近年、サージや旋回失速といった圧縮機翼列における非定常流不安定現象の発生を的確に予知してこれを回避する研究や、更に能動制御により積極的に作動範囲を拡大する空力技術の研究が盛んに行われて来ているが(1)。翼の空力弾性の振動現象である翼列フラッターについても、同様に受動あるいは能動制御の可能性が示されつつある。一方、最近の構造材料技術の分野では、スマート構造の研究が進展し、例えばこれを航空機主翼フラップの変形に応用する試み(2)などがなされている。
翼列翼にもこのようなスマート構造を応用し、翼列フラッターを抑制することができれば、構造特性を直接変化させることなどにより、信頼性の高い振動制御が実現できるのではないかと期待される。
著者らは、流体解析と構造解析を組み合わせた流体・構造連成数値解析法を開発し、これを用いて翼列フラッターの抑制手法を検討してきた(3)(4)(5)。これまでに、亜音速流れの条件において、翼の固有振動数を変化させることによって、翼振動の発散を抑えられることや(3)，翼間衝撃波を伴う亜音速流れの条件において、翼の振動動力変化させることにより、翼振動を減衰させることができる見いだした(4)。更に亜音速翼列フラッターを有効に抑制できる手法として、振動の安定性に支配的な影響を及ぼす翼間衝撃波の挙動を直接制御するため、翼後縁をフラップ状に振動させる方法を考案し、これについて解析を行った(5)。その結果、翼振動に対して後縁振動の相位を適切にチューニングすると、振動の発散を抑えられることがわかった。後縁の振動は、例えば翼面にピソ素子を貼付することにより、実現の可能性がある。
本論文ではこの制御手法に関する検討を進展させ、翼振動と後縁振動の位相差をパラメータとして種々の解析を行った。その結果から、翼列フラッターの抑制に有効な位相差を見いだすと共に、翼面上の非定常空気力分布を詳細に調べることにより、非定常空気力に及ぼす後縁振動の影響を明らかにした。

2. 解析手法
フラッターの能動制御のような動的な解析を行うためには、フラッターの発生を模擬できる解析法が必要である。この目的のために、流体・構造連成数値解析を開発した(6)。

計算の流れは図1に示す。すなわち、
①流体数値解析により翼にかかる揚力を求める。
②得られた揚力を用いて構造数値解析を行い、翼の変位を求める。
③翼の変位に応じて計算格子を移動させる。
①-③を繰り返すことで流体解析と構造解析の連成を行った。

図1 計算の流れ
流体数値解析には、基礎方程式として相対座標系における2次元オイラーフォームを用いた。対流項の評価にはHarten-Yeeの2次精度Upwind TVD法を用い、時間進行はLU-ADI陰解法にNewton反復を組み合わせて行った。

図2に計算領域と格子、および境界条件を示す。計算領域は、翼を一枚含む流路を1流路とし、これを積み重ねて翼列を模擬した。N流路の計算領域において、ある翼を基準として1番翼と呼ぶとき、翼背側方向へ2番翼、3番翼、・・・、N番翼と呼ぶとする。また、翼間位相差は翼背側方向が位相進みの場合を正とする。計算格子には、翼周りのみO型格子、入口・出口にはH型格子を用いるH+O+H型格子を採用することで、翼間の格子の直交性を良くし、入口・出口境界を速くに置けるようにした。境界条件は、入口境界では全圧および全温を一定とし、周方向速度を固定した。出口境界では静圧を一定としている。また、翼列方向の外側境界では周期境界条件を課した。このためN流路の計算領域において存在しうる翼間位相差はN個（360×n/N：n=1,2,・・・N）となる。

入口境界における伝播波動に関しては、一次元無反射境界条件を採用した。翼面境界では滑り条件を与え、後縁においてKuttaの条件を満たすようにしている。翼面上は圧力は翼面に垂直な方向の運動方程式を解くことにより内点から外挿して求めた。

図3に構造モデルで、翼を剛体として仮定し、翼振動は1次の並進振動のみを考え、ダンピングを含む、ばね質点系としてモデル化した。翼の振動モデルを図3に示す。流体解析で翼にかかる空気力を求める、これを構造数値解析での翼の振動方程式に代入することによって、流体解析と構造解析を組み合わせた。なお、以下全てのケースで、空力減衰の効果のみを抽出するため、構造減衰なしで計算を行った。また、図3に示したは翼の振動方向角度で、軸流方向を基準に、時計回りを正として取る。このは任意に設定できる。

3. 強制振動法を用いた後縁振動による制御の検討
解析対象とする翼列には、NASA Quiet Engine Programから、Quiet Fan Bの翼端部を採用した。流れ場の条件は入口マッハ数1.25、出口/入口静压比1.7である。この条件において、翼を振動させずに定常計算を行った結果のうち、マッハ数等高線を図4に示す。図4を見ると、前縁から生じた斜め衝撃波が開間翼背側90°コーデ付近に入射している。また、後縁から生じた強い衝撃波が開間翼腹側50°コーデに入射し、翼間衝撃波を形成している。これまでの解析から、この流れ場において、無次元振動数0.084の翼の振動方向120°の時に、翼間位相差90°で翼振動が不安定となること、翼振動の安定性には、翼間衝撃波によって誘起される非定常空気力が支配的であることが確認された(2)。このため、翼間衝撃波の挙動を制御することができれば、翼列フックを抑制することが可能ではないかと考えられる。

この方法として、翼の後縁をフックのように振動させる制御法を考案し、解析を行ってきた。後縁振動の概略を図5に示す。図5のように、70°コーデ位置よりも後縁側を可動域とし、振動角
Φを与えて後縁の振動を行った。振動角Φは時計回りを正としている。後縁振動の角振幅は片振幅0.35°で固定した。後縁の並進振幅は翼弦長の0.18%となる。このような後縁振動は、電圧をかけることで変形するビエゾ素子によって可能であると考えられる。

これまでの検討で、翼振動に対して後縁振動の位相が90°進んでいる場合に翼振動の発散が抑えられることが確認した(5)。さらに詳細な解析を行った結果、翼振動と後縁振動の位相差が重要なパラメータであることがわかったため、この位相差を種々変化させて解析を行った。以後、翼振動と後縁振動の位相差をδで表すことにする。

流体・構造連成解析法による解析を行う前に、後縁振動によって各翼にどのような非定常空気力が誘起されるのかを調べるため、強制振動法による解析を行った。図6にその概要を示す。計算領域には4流路を用いて、各翼を翼間位相差90°で強制振動させた。この状態で一枚おきに翼の後縁を振動させる。この時、後縁振動が位相遅れの場合を正として、翼振動と後縁振動の位相差についてはδ=0°、±45°、±90°、±135°、180°の場合について解析を行った。それらの結果のうち、特徴的な2ケースについて報告する。

図7にδ=+45°の場合、図8にδ=-135°の場合の、翼の変位と非定常空気力の時間履歴を示す。比較のため制御しない場合の結果も載せた。図中、制御翼とは後縁を振動させた翼、非制御翼とは後縁を振動させない翼を意味する。図7において、制御翼の結果について見てみると、後縁を振動させない場合(w/o control)には翼振動に対して非定常空気力の位相が進んでいるが、後縁を振動させた結果(with control)を見ると、非定常空気力が位相遅れとなっていることがわかる。翼の変位に対
図 8 翼の変位と非定常空気力の時間履歴（$\delta=-135^\circ$）

して非定常空気力の位相が進んでいる場合には翼に励振力が働いて振動が不安定になり、遅れている場合には安定となる。したがって、後縁を振動させることにより、翼にかかる励振力が制振力へと変化したことがわかる。また、非制御翼の結果を見ると、こちらでは非定常空気力が位相遅れとなっており、$\delta=+45^\circ$ で後縁を振動させると、制御翼、非制御翼の両方で振動の発散を抑制できると考えられる。図 8 を見ると、$\delta=-135^\circ$ の場合には制御翼、非制御翼とともに変位よりも非定常空気力が位相差みであり、非定常空気力の振幅は、制御した場合の方が、しない場合よりも大きくなっている。したがってこの場合、後縁振動により、励振力が増大してしまうことになる。

後縁を振動させた場合に、翼面上の空力仕事分布がどのように変化するかを見ると、図 9 に $\delta=+45^\circ$ の場合、図 10 に $\delta=-135^\circ$ の場合の結果を示す。横軸は翼弦長で無次元化した翼面上位置、縦軸は非定常空力仕事である。非定常空力仕事は計算で得られた翼面にかかる静圧をフーリエ変換し、翼の基本周波数成分を取り出して算出した。この値が正の場合、その場所にかかる非定常空気力は振動力として働き、負の場合には制振力として働く。図 9 を見ると、制御翼において腹側 50% コード付近の正のピークが、後縁加振により小さくなっていることがある。このピークは衝撃波の振動によって誘起される非定常空気力であり、後縁を振動させることによって制御翼腹側に入射する翼間衝撃波の挙動を制御できたと言える。また、このピーク以外の場所でも、腹側 70% コード付近、及び背側 70% コードよりも後縁側で、制御しない場合に比べて非定常空力仕事分布が大きく変化している。腹側 70% 付近、背側 80% 付近には、制御しない場合には見られない小さな負のピークが現れることになる。
クができている。背側 90%コード付近に存在するピークも形はほぼ同じだが、制御により全体が負の方向に移動している。図 10 の δ = -135° の場合をみてみると、制御翼では制御しない場合とした場合と、腹側 50%コード付近のピークの大きさはほぼ同じであることが分かる。また、腹側 70%コード付近や背側 70%コード付近では、非定常空力仕事が正の側に大きくなっている。これらの位置では後緒の振動によって動揺が誘起されたと考えられる。非制御翼の結果を見ると、制御した場合に腹側 50%コード付近のピークが大きくなっており、制御翼で後緒を振動させたことによって、この部分での非定常空気力が大きくなったことが分かる。背側 90%コード付近のピークはやや小さくなっているが、腹側 50%付近のピークの増大と比較するとわずかであり、翼周りに非定常空力仕事の積分した場合には、制御した場合のほうが少ない場合よりも仕事が出てくる。

これらの結果から、制御翼においては後緒が振動することにより可動域全体で非定常空力仕事分布が変化すること、および、制御翼における後緒振動によって生じた圧力変動が、隣接する制御翼にも影響を与えていることがわから。また、δ = ±45° と δ = -135° の結果から、適切な δ を選択すると、後緒振動によって翼振動をうまく抑制できるが、誤った δ を設定してしまうと、かえって振動を不安定にしてしまうことが明らかになった。

4. 流体・構造連成解析法による翼列ブロッサーの抑制

前節の結果より、後緒振動による翼振動抑制の有効性が確認できたので、流体・構造連成解析法を用いて後緒を振動させた場合の解析を行った。計算では 1 翼列と 3 翼列に初期速度を与え、2 翼列と 4 翼列には初期変位を与えた。初期速度は \(V_0 = 0.01 \text{C} \omega \) （C：翼弦長、ω：翼の角振動数）とし、1 翼列に \(V_0 \) を、3 翼列に \(-V_0 \) を、それぞれ与えた。一方、初期変位として 2 翼状に 0.01C、4 翼状に -0.01C を与えた。各翼が翼間位相差 90°で振動している状態から、1 翼列と 3 翼列の後緒を \(\beta = \pm 45° \) で振動させて計算を開始した。流体・構造連成解析では、翼振動を先駆的に与えることができないため、翼振動と後緒振動の位相差を以下のように与えた。翼変位の時間履歴をデータとして 3 周期分保存し、このデータを各タイムステップごとにフーリエ変換してスペクトル分布を算出し、スペクトルが最大となる周波数を翼の振動周波数とする。これにより翼の振動は式(4.1)のようにモデル化できる（振幅は考慮しない）、後緒の振動角 \(\phi \) を式 (4.2) のように与えることができる。

\[
h' = \sin(\alpha + \theta) \cdots (4.1)
\]
\[
\phi = B \sin(\alpha + \theta + \delta) \cdots (4.2)
\]
δ = 45° の際の翼の変位と非定常空気力の時間履歴を図 11 に示す。図 11 において、はじめ翼の振動振幅が発散するのは、上述の翼振動のモデル化を行う際に、計算開始時点では翼変位のデータが存在しないため、モデルと実際の翼変位とが異なり、δ = 45° となっていないためである。しかし、2 周期目からは制御の効果が現れ、制御翼、非制御翼ともに翼振動が減衰していく。また、制御翼の後縁を振動させることによって、どちらの翼にも空力減衰力がかかるために、制御しない場合と比べて振動周期が大きくなっていることが分かる。翼間位相差は 90° のままであり、振動が不安定な条件であるにもかかわらず、翼振動の発散が抑えられていることになる。したがって、流体・構造連成解析の結果からも、δ = 45° の後縁振動による翼列フラッターの制御の有効性が確認できたと言える。

5. 結言

後縁振動による翼列フラッター制御の有効性について、翼を強制振動させた解析と、流体・構造連成数値解析法を用いて検討を行った。翼振動と後縁振動の位相差が重要なパラメータであることから、強制振動法によって種々の位相差について解析を行うこと、位相差が 45° の場合には最も後縁振動の効果があり、-135° の場合には翼振動を助長してしまうことが分かった。このことから、翼振動と後縁振動の位相差は場合に関じて最適化する必要がある。また、流体・構造連成数値解析法を用いて、位相差が 45° の場合の解析を行った結果、後縁を振動させた翼だけでなく、振動させなかった翼についても翼振動の発散を抑え、減衰に変化させることができた。

参考文献
(1) 大田・加藤、「旋回失速流れとその制御：一軸減圧縮機における近年の成果」、日本ガスタービン学会誌、Vol. 22, No. 88, 1995, pp.54-60.
(3) 賀澤・渡辺、「流体・構造連成数値解析法による翼列振動制御の解析」、第 41 回航空原動機・宇宙推進講演会講演集、2001、pp.110-115.
(4) 賀澤・渡辺、「適用速翼列の振動に対する能動制御の可能性」、第 42 回航空原動機・宇宙推進講演会講演集、2002、pp.196-201.
(5) 賀澤・渡辺、「スマート構造による翼列フラッター能動制御の可能性」、第 30 回ガスタービン定期講演会講演集、2002、pp.215-220.
多翼列CFDを活用した高圧縮機の翼振動低減方法の検討

＊加藤 大（石川島播磨重工業株式会社）
今成邦之（石川島播磨重工業株式会社）

1. まえがき
発電などに使用されるガスタービンの高効率化を図ることは、省エネルギーや地球環境保護の面で切望されている。近年、MGC（Melt-Growth Composite：液融成長複合材料）と呼ばれる、1700℃まで高強度を維持でき、かつ耐酸化性に優れる超耐熱材料が開発されており(1)，これをガスタービンのタービン翼や燃焼器に適用できれば、高温・高圧化により大幅な効率向上が期待できる。平成13年度より開始された「MGC超高効率ガスタービンシステム技術開発」では、MGC材料適用ガスタービン実現のための基礎技術を確立するために、MGC材料やガスタービン要素の研究を行っている(2)。

その中で、ガスタービンの重要な構成要素の一つである高圧縮機においては、高圧縮により共振による翼振動レベルが增大し、システム全体の信頼性を低下させが懸念される。多段環境における翼振動レベルを予測し、低減することが技術課題となる。そこで、本研究では、まず、多翼列CFD解析と振動構造解析を組み合わせた翼振動予測法を構築して、圧縮機試験データとの比較を通じて予測精度の向上を図った。次にこの手法を用いて、上流・下流翼列間の相対位置関係などをパラメータとして翼に作用する励振力レベルの増減を調査し、翼振動を低減するための方策を検討した。

2. 多翼列CFDを活用した翼振動予測手法
多段環境における翼振動応答の予測精度を向上させるために、図1に示すような多翼列CFD解析と構造FE解析を組み合わせた翼振動予測手法を開発した。この手法では、幾つかの代表的な

図1 多翼列CFD解析を用いた翼振動予測法

第31回ガスタービン定期講演会
講演論文集，2003.6，(北見)
Download service for the GT5J via 54.70.40.11, 2020/04/05. —241—
図2 供試圧縮機の全体性能及び翼振動発生点

パネルにおいて、上流あるいは下流の励振源となる翼列と振動を評価する対象の翼列を含む2次元非定常の多翼列CFD解析を実施し、対象翼列の翼面各点での圧力を時系列データを求める。これらのデータをそれぞれフーリエ解析し、上流あるいは下流翼の翼枚数に対応するフーリエ次数での空力励振力を抽出する。この励振力を構造モデルに外力として貼り付け、構造FEM解析を実施し、共振時の翼振動応答を求める。なお、ここで用いる多翼列CFD解析は、圧縮機試験により精度検証を実施したコード(3)をベースとしており、詳細は文献(4)を参照されたい。また、空力減衰は、単翼列の線形解析(4)により予測し、構造減衰は、対象とする振動モードが主に高次パネルモードのため、翼支持部等での摩擦減衰を無視し、材料減衰のみを付加した。

3. 供試圧縮機の試作・試験

MG材料適用ガスタービンでは、全体圧力比として30程度が1つの有力な形態である(5)。低圧圧縮機でそのうち2程度の圧力比を稼ぐことを想定しており、本研究では、その下流に組み込むことを想定した圧力比レベル1の高圧圧縮機を従来のフローパターン解析等の設計手法により設計・試作し、前節の予測手法を検証するための性能ならびに翼振動データを、高圧圧縮機単体の要素試験により取得した。図2には、取得した全体空力性能を、それぞれ設計点の数値で無次元化して示す。想定した作動線上にて、設計で意図した流量、圧力比、効率が得られた。図3には、高圧化により特に振動増加の懸念される後段翼列の事例として、6段動翼の振動データを示す。図4の試験キャペル線図に示すように、設計回転数の70％近辺で5段静翼の翼枚数に起因して、同図(a)に示すような1～3Sと呼ばれる高次パネルモードの共振が発生する。
5段静翼 - 6段動翼 - 6段静翼の形態で、2次元非定常多翼列CFD解析をそれぞれ20%, 50%, 80%スパンにて実施し、5段静翼ウェークによる6段動翼の空力労働力を求めた。図4(a)には、50%スパンでの解析結果を示す。同図(b)に、得られた力労働力を用いて予測した1-3Sモードでの共振時の動振動力を、試験値ならびに従来の単段レベル予測値と比較する。開発した手法では、従来よりも予測力ニッケルが下がり、試験値より近い結果が得られている。この理由の1つとして、図5に、多翼列解析での5段静翼ウェークを、単段レベル予測で境界条件として用いた単翼列解析によるウェークと比較する。多翼列解析では、下流動翼とのポテンシャル干渉によりウェークの位置、深さともに変動し、このため動翼翼面の非定常圧力分布も揺らぎ、より現実に近い力労働力を再現できたものと考えられる。

5. 翼振動低減方法の検討

5.1 クロッキングによる振動低減検討

開発した予測手法を用い、6段動翼の振動を対象として、まず、図6に示すように、上流・下流静翼同士の翼枚数を揺さ、周方向の相対的位置関係を変えるクロッキングにより、振動応
図 7 異なる静翼クロッシング位置での 6 段動翼周りの 1, 5 段流れ解析結果（等エントロピー表示：80%スパン、5段静翼入口マッハ数 0.42）

力の増減を調べた。クロッシングにより、その中間に挟まれた翼に働く空力験力が変化することは報告されているが、翼の特に高次パネルモードの振動応力低減への効果を調べた事例は見当たらない。

図 7 に、異なるクロッシングでの解析結果を示す。相対位置 1（shift=0% ピッチ）では、上流静翼ウェークが下流静翼前線付近に到達し、相対位置 3（50% ピッチ）では、下流静翼翼間を通して通過する。図 8 には、6 段動翼に働く空力験力と、1 - 4 S のモードベクトルとの内積をとったモーシャル力（モードに対する有効力）分布を示す。モードベクトルは、翼全体の最大振動変位振幅が翼チップ弦長の 5% 長となるように正規化し空力験力は出口流量と翼弦長で無次元化した。振動振幅の絶対値の大きい 80%スパンのモーシャル力が支配的だが、異なるクロッシング間で有意な増減が見られる。

これらの空力験力を利用して、構造 FEM 解析により予測した 6 段動翼の 1 - 4 S モードでの振動応力を図 9(a) に比較する。実験で実験を行った供試圧縮機では、5 段静翼と 6 段静翼の翼枚数が異なるためクロッシングは発生しない。この場合、予測振動応力をベースとして、クロッシング時の振動応力をそれぞれ除してある。この予測結果から、クロッシング位置を適正化すれば、翼振動応力は最大で約 35% 低減し得ることが判明した。図 9(b) には、各クロッシング位置での効率を比較するが、効率の変化量は±0.3 ポイント程度で、翼スパンにより最適な位置も異なっており、圧縮機全体効率への影響は小さいと考えられる。

図 8 静翼クロッシングによる 6 段動翼の 1 - 4 S モードのモーシャル力分布の変化
5. 2 上流静翼の不等ピッチ間隔化による翼振動低減検討

上流の5段静翼を不等ピッチ間隔に並べることによって6段動翼に対する助振源の周期性を崩し、翼振動の低減を図る。図10には検討した配置、及び流れ場の様子を等間隔の場合と比較して示す。不等間隔の度合を強め過ぎると静翼の空力性能の劣化が懸念され、また不等間隔パターンの周方向波長を長くすると、下流動翼に対するディストーションとなる懸念もあるため、ここでは、図10に示すように、周方向に8ピッチかけて、±10%不等間隔化にとどめた。

図11(a)には、6段動翼の1-3Sモード及び1-4Sモードの共振における翼振動応力の、等間隔配置時の振動応力に対する比を示す。どちらのモードでも、30%程度の振動応力低減を達成し得ることが明らかになった。同図(b)には、等間隔と不等間隔での効率を比較するが、検討した程度の不等間隔化では、効率への影響は小さいことも確認できた。

図10 等間隔・不等間隔に並べた上流静翼と動翼との多翼列CFD解析結果
（等エントロピー表示；50%スパン、静翼入口マッハ数0.44）
図11 上流静翼の不等ピッチ間隔化による動翼振動応力低減量および効率变化量の予測結果

6. まとめ

高圧圧縮機にて懸念される高次パネルモードの翼振動低減を検討するために、多段環境に適用できる翼振動予測手法を開発し、この手法を用い、圧縮機後段動翼の振動低減方法を検討した。

(1) 多翼列CFD解析と振動構造解析を組み合わせた翼振動予測手法を開発し、供試圧縮機試験で取得したデータでの検証により、翼振動応力をより高い精度で予測できることを確認できた。

(2) 開発した手法を用い、直上流・下流静翼のクロックインによる動翼の振動低減を検討した。最適位置により、振動応力は約35%低減し、この際の効率変化も小さいことが予測できた。

(3) もうひとつの低減策として、上流静翼を不等間隔に配置する手法を検討し、等間隔時と比較して翼振動応力を30%低減でき、効率変化が小さいことも判明した。

謝辞

本研究開発は、経済産業省のエネルギー使用合理化技術開発補助事業による「MGCE高効率ガスタービンシステム技術研究開発」について、新エネルギー・産業技術総合開発機構（NEDO）との共同研究により実施したもので、本研究開発の実施にあたり、ご指導とご協力をいただいた経済産業省、NEDOおよび多くの関係各位のご厚意に対し、深く感謝の意を表します。

参考文献

(1) 和久、1999. “超常熱材料開発の動向、一方向凝固酸化物共晶複合材（MGC）について”、日本ガスタービン学会誌、Vol.27、No.2

(2) 小林、藤原、中川、横井、2002. “MGCE高効率ガスタービン技術の研究開発”，第30回ガスタービン定期講演会講演論文集、669-674。

(4) 加藤、今成、2001. “多段軸圧縮機における動翼クロックインの数値解析検討”，第16回ガスタービン秋季講演会講演論文集、57-62。

(5) 平成12年度「MGCE高効率ガスタービンシステム技術先導研究開発」成果報告書

遷音速圧縮機における非定常多段解析と単翼列解析

*山上 舞 (石川島播磨重工業)

今成 邦之 (石川島播磨重工業)

1. はじめに

最近の計算機の発達と数値流体力学(CFD)の進歩により、多段ターボ機械の空力設計においては単翼列や複数の翼列に、定常3次元粘性CFD解析が適用されている。これによって設計者は粘性および3次元の影響を現実的に予測でき、更に、個々の翼列を解析することによって、スウェプトファン動翼の開発(1)から、拡散制御静翼(2)にまで至る、圧縮機の性能改善のための知見を得ることができるようになった。

現在の多段圧縮機の設計システムにおいては、単翼列 CFD 解析が多用されるようになったが、loss、deviation、blockage といった経験ファクターに基づいた流線解析モデルを用いて各翼列の入口・出口境界条件を得ている。よって設計範囲内の設計であれば信頼できるが、設計範囲を越える先進的な設計を行う場合、問題を起こす可能性がある。

近年では、欧米のガスタービンエンジンメーカーの大半は、3 次元定常多段翼列 CFD 解析を多段圧縮機の設計に適用している。多段翼列 CFD 解析では、より現実的な対数的な入口境界条件が得られるため、従来の設計で必要とされていたように、経験的に得た loss や blockage などのパラメータを入力する必要なく、より現実に近い設計が可能となる。また、圧縮機内部の流れ場の詳細を調べることで物理的解釈をより深めることができる。

多段解析が圧縮機の詳細な流れ場を理解し、性能を改善する上で有効な手段であることは、幾つかの例で実証されている。Mansour 他(3)(4)は、4段の軸流圧縮機の設計に多段解析ツール(APNASA)を適用し、試験との検証によってその効果を実証した。この中で、彼らは初期の流線解析モデルを用いた設計に対し、多段解析によって予測された流量および圧力比が大きく、ミスマッチが生じたことについて言及している。これは、多段解析によって予測された静翼の deviation が単翼列解析のものよりも 2 deg ほど大きいためである。単翼列解析と多段解析における静翼の deviation の違いは、このように初期段階の設計において大きなインパクトを与える。しかし、多段解析をこのように試行錯誤しながら設計に適用するには、解析に数ヶ月の時間を要し、現実的でないのが現状である。

このような差が生じるメカニズムについては、時間平均的な翼列間干渉、特に出口境界条件の違いとして説明する試みがされている(5)が、入口境界条件や非定常性の影響も否定できない。さらに、非定常的な影響を調査したものは、著者らが知る限りない。この違いが生じる原因とメカニズムを解明し、考慮できれば、初期段階でより現実に近い設計が可能となる。

そこで、本研究では、遷音速多段圧縮機における、定常的な翼列間干渉や翼列間干渉の非定常性が静翼の流れ角に及ぼす影響を、3次元非定常圧縮流粘性CFD 解析を用いて検討した。ここでは、2種類の先進圧縮機の部分段に相当する遷音速の 3.5 段および 2.5 段の翼列系について解析を行い、同コードによる単翼列解析結果と比較した。また、2.5 段の翼列系については定常多段 CFD 解析との比較も行い、翼列間干渉の非定常性が静翼の流れ角に及ぼす影響についても検討した。

2. 対象翼列系

表 1 には計算した遷音速の 3.5 段翼列系（機種 A とする）の主要パラメータをまとめている。この系はベ
ースとなる多段圧縮機の前段（入口案内翼～3段静翼）を模擬している。

表2にはもう1種の軸流圧縮機である、選音速の2.5段翼列系（機種Bとする）の主要パラメータをまとめた。この系もベースとなる多段圧縮機の前段（入口案内翼～2段静翼）を模擬している。

表1 3.5段解析用圧縮機(A)翼列系の幾何・空力パラメータ

<table>
<thead>
<tr>
<th>Inlet Relative Mach number (Tip)</th>
<th>Inlet Absolute Mach number (Mid Span)</th>
<th>Diffusion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane</td>
<td>1st-stage rotor</td>
<td>1st-stage stator</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>-</td>
<td>1.30</td>
<td>0.80</td>
</tr>
<tr>
<td>0.51</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-0.22</td>
<td>0.47</td>
<td>0.51</td>
</tr>
</tbody>
</table>

表2 2.5段解析用圧縮機(B)翼列系の幾何・空力パラメータ

<table>
<thead>
<tr>
<th>Inlet Relative Mach number (Tip)</th>
<th>Inlet Absolute Mach number (Mid Span)</th>
<th>Diffusion factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane</td>
<td>1st-stage rotor</td>
<td>1st-stage stator</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>-</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>0.43</td>
<td>-</td>
<td>0.67</td>
</tr>
<tr>
<td>-0.20</td>
<td>0.51</td>
<td>0.54</td>
</tr>
</tbody>
</table>

3. 数値解析手法

2種類の圧縮機についてCFDによる3.5段および2.5段非定常段解析を実施した。本解析では3次元の非定常レイノルズ平均圧縮性NS方程式を支配方程式とし、乱流粘性の評価にはBaldwin-Lomax代数モデルを用いる。数値解は有限差分法に基づいており、空間差分には対流項にChakravarthy-OsherのTVDスキームを適用し、粘性項に中心差分を適用する。時間方法はEuler陰解法により離散化し、Newton sub-iterationを適用して積分している。

計算に用いた3.5段圧縮機の子午面形状を図1、格子形状概観を図2に示す。計算格子は各翼列ごとのマルチブロックとなっており、H型格子にて生成している。翼面前点のy+は約10〜20程度である。解析は1/10周期分について実施し、翼枚数は計28枚である。格子点数は1動翼で平均80万点、1静翼で平均60万点、全翼列で約2800万点である。

図1 解析対象圧縮機子午線形状
図2 計算格子形状概観
入口境界では全圧、全温、流れ角を設定し、出口境界では背圧を設定する。翼面とハブ・ケーシン
グ面には滑り無し条件、断熱条件を課す。
また、本コードの実験との検証は平井ら(6)によって確認されている。

4. 結果および考察

4.1 現象の設計流線解析（フローパターン）との比較

まず、非定常多段解析結果を、同コードを用いた単翼列解析結果と比較した。定常単翼列解析の入
口および出口条件は、設計フローパターンによる。非定常解析によって予測された動翼の相対流出
角に関しては、すべての動翼について、両者はほぼ一致した。しかし、静翼の相対流出角に関しては、
非定常多段解析と単翼列解析で両機種において、図3（機種A）、図4（機種B）にみられるような違いが
生じることがわかった。

図3.1、図3.2、図3.3にそれぞれ機種Aでの3.5段解析における1段静翼、2段静翼、3段静翼の絶
対流出角を単翼列解析の結果と比較した。解析結果はともに周方向に流量平均したものである。図3
によると、多段解析による予測は、単翼列解析に対し、1段静翼で約3deg、2段静翼で約3.5deg小さ
くなっていることがわかる。また、最後尾の3段静翼では、ミッドスパン付近ではほぼ一致しているが、
チップ側では多段解析による予測の方が小さくなってしまおり、分布に違いが見られる。このため約2deg
の違いが生じている。

次に機種Bでの2.5段解析における1段静翼、2段静翼の絶対流出角を単翼列解析の結果と比較した。
この場合も1段静翼においてミッドスパン付近で約3degの程度の違いがみられる。ハブ側においては、
約10degの違いがみられる。最後尾の2段静翼はミッドスパン付近ではほぼ一致しているが、その分
布が異なる。

このように、機種によらず、非定常多段解析と現状のフローパターンによって予測される流出角に
は、大きな違いが生じていることがわかる。このような違いを生じる要因としては、次の3つがあげ
られる。一つは出口境界条件の違い、つまり後ろの翼列との干渉によるBody forceの影響(5)がある。
2つ目は入口条件の違い、3つ目は流れ場の非定常性の影響と考えられる。そこで、本研究では、ま
ず入口条件および出口条件の違いに着目し、入口条件を非定常多段解析の時間平均値として与えた単
翼列解析を行い、結果を比較した。次に、非定常性の影響に着目し、定常多段解析と非定常多段解析
結果を比較し検討を行った。

4.2 入口条件および出口条件の影響

まず入口条件と出口条件の違いの影響を調べるため、非定常多段解析における翼列境界の時間平均
値を入口分布として用いた単翼列解析を行い、多段解析結果と比較した。解析は、機種Aの2段静翼
および3段静翼について行った。図5に入口条件とした全圧半径方向分布を示す。

図6に2段静翼における絶対流出角を多段解析と単翼列解析で比較した。図6によると、入口条件
を合わせた単翼列解析(入口1)による流出角は、多段解析結果とはほぼ同じ分布形状をもって、約3deg
大きいことがわかる。

図7に2段静翼出口静圧の半径方向分布を多段解析と単翼列解析(入口2)で比較した。後方に翼列の
ある多段解析では、ミッドスパン付近で静圧の落ち込みがみられるが、単翼列解析においてはこのような落ち込みはみられない。このような出口静圧の分布の違いが生じるのは、主に後方の翼列との干
渉の影響であると考えられ、過去の文献において後方の翼列のBody Forceを考慮する際の分布形状と
して報告されたもの（S）とほぼ一致している。
次に、図 8 に 3 段静翼における絶対流出角を多段解析と単翼列解析（入口 2）で比較した。両者はハブ、チップ側の分布に違いが見られるものの、定量的にはほぼ一致した結果が得られた。チップ側で両者の分布形状が異なるのは、単翼列解析では、非定常解析で示されたものよりも更に大きな剥離領域が生じてしまうためである。このように剥離の大きい流れ場では、非定常性の影響が支配的であり、非定常多段解析結果を時間平均した入口条件での単翼列解析では流れ場を再現できないことがわかる。

4.3 非定常性の影響
4.2 では、入口および出口条件の非定常性は考慮されていない。また、後方の翼列との非定常的な干渉の影響に関しては定常単翼列解析では調べることができない。したがって、多段解析におけるこのような非定常性の影響を調べるため、機種 B の 2.5 段について定常多段解析を行い、非定常多段解析結果を比較した。定常多段解析のコードには別の市販コードを用いた。解析は 3 次元のレイノルズ平均圧縮性 NS 方程式を支配方程式とし、乱流粘性の評価には Chien の低レイノルズ型 k-ε乱流モデルを適用している。また、空間方向の離散化には中心差分スキームを、時間方向の離散化には Runge-Kutta の 4 次精度陽解法を用いている。翼列間の接合面の境界条件としては、mixing plane を適用している。
図 9.1 に 1 段動翼の相対流出角、図 9.2 に 1 段静翼絶対流出角の半径方向分布を、非定常多段解析と定常多段解析結果で比較した。図 9.1 より、動翼の相対流出角の分布は良く一致している。しかし、図 9.2 の静翼の絶対流出角は、ミッドスパン付近ではほぼ一致しているものの、ハブ、チップ付近での分布形状が異なり、約 1.3deg、非定常解析結果の方が小さいことがわかる。したがって翼列前方および後方の非定常的な翼列干渉の影響としては、静翼の絶対流出角において約 1 deg 程度の差が生じると考えられる。ただし、厳密な評価は同一コードの定常多段解析と非定常多段解析結果を比較して行う必要がある。

5. まとめ
2 機種の涵音速圧縮機の一部について、翼列間干渉や非定常性が静翼の流れ角に及ぼす影響を 3 次元非定常粘性解析によって調査し、以下に知見を得た。
（1）非定常多段解析と現状のフローパターンにおける静翼の絶対流出角は、多段解析の方が 2 ～ 3 deg 以上小さく予測されており、大きな違いが生じていることが明らかになった。
（2）非定常多段解析における入口条件の違いを時間平均的に考慮した単翼解析を行ったところ、多段解析と出口流れ角の分布は一致し、約 3 deg の違いが生じた。この違いは主に、後ろの翼列との干渉（Body Force）によるものと考えられ、後ろに翼がない場合ではこのような違いはほとんどみられないと考える。
（3）動翼列の接合面に Mixing Plane を適用した定常多段解析を行ったところ、非定常多段解析と約 1 deg 程度小さく予測されることが確認された。したがって、(1)(2)における違いのうち、約 1 deg は翼列間の非定常性によるものであると推察される可能性がある。

6. 参考文献
図3.1 機種Aの1段静翼絶対流出角
図3.2 機種Aの2段静翼絶対流出角
図3.3 機種Aの3段静翼絶対流出角
図4.1 機種Bの1段静翼絶対流出角
図4.2 機種Bの2段静翼絶対流出角
図5 多段解析結果の時間平均入口全圧分布
過給機用ラジアルタービンスクロールの内部流動に関する研究

大迫雄志, 前川昌三（三菱重工業汎用機・特車事業本部）
中道憲治（三菱重工業長崎研究所）

1．はじめに

ラジアルタービンスクロールは、円周方向に断面積を減少させることで、ガスに半径方向速度を与え、ノズル、または動翼に流入させる重要な構成要素（図1）であり、この形状のため強い3次元流れと流速変動を有している(1)(2)(3)。一方、ラジアルタービンは、過給機等に使用されており、急拡大している過給機市場からは小形大容量化要求が高く、ラジアルタービンスクロールは、流れの増加と曲率半径の縮小により損失が増大する傾向にある。

そこで、本研究は、さらにラジアルタービンの高効率化を進めるために、タービンスクロールの流動計測とCFD（Computational Fluid Dynamics）の比較検証を行い、スクロール内部流を詳細に把握することを目的として実施した。

図1 ラジアルタービンスクロール

2．タービンスクロール流動計測

2.1 供試機及び試験条件

流動計測には、過給機の性能試験用設備を使用し、内部を詳細に計測できるように、乗用車用過給機のラジアルタービンスクロール（1つロスクロール）をスケールアップしたモデル（3.07倍）を用いて試験した。このタービンスクロールは、ノズルレススクロール（ノズルが無く、ノズルの代わりの役目も担うスクロール）であり、スクロールの性能がタービン性能に大きく影響するため、これを計測対象とした。このスクロールに、産業用・船用過給機のタービン動翼（動翼外径132mm）を組み合わせた状態で流動計測した。表1に供試タービンの主要目を示す。

<table>
<thead>
<tr>
<th>供試機本体</th>
<th>産業用・船用過給機</th>
</tr>
</thead>
<tbody>
<tr>
<td>スクロール</td>
<td>1つロスクロール（乗用車用過給機スクロール相似拡大）</td>
</tr>
<tr>
<td>ノズル</td>
<td>ノズルレス</td>
</tr>
<tr>
<td>動翼</td>
<td>産業用・船用過給機ラジアルタービン動翼（動翼外径132mm）</td>
</tr>
</tbody>
</table>

試験は、設備の空気源より低圧高圧の空気を供試機に供給し、まず圧力比1.5、2.0、2.5について、速度比(U/C0)を0.6〜0.8の間で振ってラジアルタービン全体性能を計測した。次にタービンスクロール...
ールの流動計測試験については、常用圧力比の1.5において、前述のようにタービン動翼と組み合わ
せた状態で、回転数を効率ピーク点の速度比(U/C0)0.7に設定し、スクロールの流動を計測した。

2.2 計測位置及び計測方法

供試したラジアルタービンスクロールと計測
位置を図2に示す。計測位置は、タービンスクロールの流路中心位置を周方向に7点(0deg〜270
deg(45degピッチ))、半径位置は各点で異なる
と、スクロール出口(半径R=70mm)位置を周
方向に10点(0deg〜270 deg(45degピッチ)
270 deg〜360 deg(22.5degピッチ))とし、そ
れぞれの位置で翼高さ方向への計測を実施した。
スクロール出口の各計測点については、翼高さ
方向に13点計測したが、流路中心の各計測点に
ついては、翼高さ方向(幅方向；回転軸Z方向)に高さが変化するため、最大で19点、最小で11
点計測した。

計測方法については、流速、流れ角度を、流路中心位置の各点を非接触型のLDV (Laser Doppler Velocimeter)装置を使用して計測した。スクロール出口の各点は、スクロール翼高さ(回転軸Z方
向)が急激に変化し、かつタービン動翼との間が狭い箇所であるため、LDV装置のレーザ光が入り
難く、3孔ビード管を使用して、静圧、流速、流れ角度を計測した。

計測に使用したLDV装置の諸元を表2に示す(6)。LDV装置は、光源に2カラー4ビームのア
ルゴンイオンレーザを使用した光ファイバーワイプの後方散乱差動型LDV装置である。シーディング
には、市販の多価アルコール水溶液を使用し、シーディングタンクを加圧して高圧のスクロール側面
に供給した。

表2 計測装置の仕様

<table>
<thead>
<tr>
<th>LDV</th>
<th>レーザーパワー</th>
<th>5Wアルゴンレーザ</th>
</tr>
</thead>
<tbody>
<tr>
<td>信号処理</td>
<td>BSA 2カラー青緑4ビーム</td>
<td></td>
</tr>
<tr>
<td>焦点距離</td>
<td>600mm</td>
<td></td>
</tr>
</tbody>
</table>

2.3 流動計測結果

ラジアルタービンスクロール流動計測試験結果を図3に示す。スクロール流動計測試験は、常用
圧力比1.5で、タービン全体性能での最大効率点、すなわち速度比(U/C0)0.7の点で計測した。

スクロール流動計測試験結果において、スクロール流路中心では、スクロール循回方向である周
方向流速分布は、主流に対し側壁面のハブ、シュラウド近傍の流速が遅い境界層が認められる。これ
に対し、半径方向流速分布は、側壁面近傍の境界層では遅心力が小さいため、主流に対し側壁面のハ
ブ、シュラウド近傍の流速が遅い3次元境界層(ねじれ境界層)を形成している。また、半径方向
流速分布では、周方向角度θ=135deg～180deg付近で、3次元境界層が最も発達している。この結果、流れ角（流れと周方向の接線との角度）についても、側壁面近傍で増大する分布になっている。

スクロール出口でも流路中心と同様の傾向であるが、但し、流路中心からスクロール出口へ向かう変化に注目すると、流路中心より、スクロール出口では、半径方向流速Crの境界層流速と主流の差が減少する傾向にある。これは、流路中心からスクロール出口へ向かって、スクロール翼高さ（回転軸Z方向）が急激に減少しているため、半径方向流速分布の流速差が減少していると思われる。

2・4 スクロール内部流動の課題

スクロール出口での半径方向流速Crの周方向分布、翼高さ方向分布を図4に示す。スクロール周方向では、周方向角度θ=300deg以上に流動歪みが生じており、これはスクロール舌部での再循環流による流動歪みと思われる。翼高さ方向には、側壁面近傍の流速が速い3次元境界層が形成されており、側壁面側を合わせて40％の領域を占めている。前述したように、この境界層内から流出する流れは流出角度が大きく、境界層から多くの流量が排出される特徴的な流動になっている。

以上のように、ラジアルターピンスクロールの内部流動は、3次元境界層の支

図3 ターピンスクロール流動計測結果（圧力比1.5、速度比0.7）

図4 スクロール出口の半径流速平均値の分布
配的な流れであり、スクロール出口でも周方向、翼高さ方向（回転軸Z方向）に流出歪みが残っていることが分かった。

3. 内部流動解析の検証

3.1 汎用コードによるスクロール流動解析結果

ターピンスクロール解析は、スクロール下流のターピン動翼の影響を考慮し、流量が一致するよう解析した。解析条件は、圧力比 1.5、速度比 0.7 におけるスクロール入口でのトラバース計測結果を境界条件とし、汎用の 3 次元粘性解析コード（STAR-CD）を用い、解析した。解析セル数は約 35 万点で、境界層を捉えるように、スクロール出口翼高さ方向の約 20％の長さに 13 点以上の格子数をとってい、図 5 にターピンスクロールの解析メッシュ図を示す。

まず、ターピンスクロール出口の翼高さ方向平均値の周方向分布について、解析結果と計測結果を比較したものを、図 6 に示す。翼高さ方向の平均流速（周方向流速 Cg、半径方向流速 Cg）は、解析結果と計測結果ともほぼ一致するが、但し、スクロールの巻き終わり（舌部）に近い周方向 θ =300° 以降で、解析と計測は、やや傾向が異なる。

次に、翼高さ方向の半径方向流速 Cg 分布について、周方向の各点で、解析と計測とを比較した。スクロール流路中心、スクロール出口での比較を図 7 に示す。スクロール流路中心では、周方向 θ =180° 付近まで、解析と計測は良く一致し、3 次元境界層も良く捉えている。但し、周方向 θ =225° 以降で、計測との差が生じている。また、スクロール出口では、解析と計測の平均値は、周方向の各点ともほぼ一致するが、翼高さ方向の解析値の流動分布は、計測と一致せず、3 次元境界層をあまり良く捉えていない。
図7 翼高さ方向の半径方向流速分布の比較

3・2 スクロール流動解析の課題

汎用の流動解析コード（STAR-CD）について動翼の影響を考慮したスクロール解析を実施した結果、周方向の流動分布は計測結果と定性的に一致し、スクロール流動解析の有効性を確認できた。但し、境界層に13点以上の格子数をとっているにもかかわらず、特にスクロール出口での翼高さ方向の流動分布が良く一致せず、3次元境界層の捕捉精度に課題があることが解った。

計測で明らかになったように、ターピンスクロールの流動は、スクロール側壁の3次元境界層内の流れ角が大きく、境界層から多くの流量が排出されるため、スクロールの3次元粘性流動解析の高精度化が必要である。

4．まとめ

ラジアルターピンスクロールの内部流動、出口流動をLDV（Laser Doppler Velocimeter）などで計測し、計測結果とスクロール流動解析結果と比較して、スクロール内部流動の課題と流動解析の課題を検討した。

その結果、スクロール内部流動は、1次元的にはスクロール舌部で歪みが生じる流動であるが、スクロール側壁での3次元境界層が支配的な3次元的な流動であることを把握した。スクロール内部流動の課題として、この3次元境界層を説明する必要があることが解った。また、汎用の3次元粘性流動解析コード（STAR-CD）を使用してスクロール解析を実施した結果、周方向の流動分布は、計測結果と定性的に一致し、スクロール流動解析の有効性を確認した。但し、翼高さ方向の流動分布は、3
参考文献

次世代単結晶超合金の開発

*小泉 裕、小林敏治、横川忠晴、原田広史（物質・材料研究機構）
青木祥宏、荒井幹也（石川島播磨重工業）

1. 緒言
地球温暖化防止のための CO₂削減を達成する有力な手段として、コンパインドサイクル発電、コジェネレーション、ジェットエンジンなどに用いる各種ガスターピンの高温化・高効率化に大きな期待が寄せられている。その実現のためにはより耐用温度の高い Ni 基超合金の開発が必要である 1)

Ni 基超合金は図 1 に示すように 1940 年代の錬造合金から普通錬造合金、一方向凝固合金、単結晶合金へと開発が進み、耐用温度も開発とともに年々上昇していった。単結晶合金だけでも初期の第 1 世代から、レニウム（Re）を 3wt%程度含む第 2 世代、Re を 5 〜6wt%含む第 3 世代合金へと開発が進み、現在、第 3 世代合金 CMSX-10 2), Rene' N63, 3), TMS-75 4)などが航空機エンジンあるいは発電用ガスターピンの動翼として商用あるいは実験的に用いられている。

著者らは「新世紀耐熱材料プロジェクト」において、組織が安定で耐用温度が 1100℃（137MPa、1000h クリープ寿命 図 1 Target）に達する Ni 単結晶超合金の開発を行ってきた。これまでに耐用温度 1083℃の第 4 世代 Ni 基単結晶超合金 TMS-138+5)などを開発したが、目標値である 1100℃を達成するには至っていない。

そこで本研究では、第 4 世代単結晶 Ni 基超合金 TMS-138 をベース合金として、γ/γ'格子定数ミスフィットを調整して整合界面の転位組織を制御するとともに、Ru の組織安定化効果を併用することにより、耐用温度 1100℃の新合金の設計開発を試みた。

2. 合金設計
Ru を 2 mass%添加した第 4 世代合金 TMS-138 をベース合金として用い、ミスフィットの調整のため Mo を增量した。Mo は γ' 相よりも γ 相により多く分配され、γ 相の格子定数をより大きくする。したがって、ミスフィットを負 (aγ' < aγ) に大きくし、γ/γ'界面転移圧を緻密化する効果がある 6)。図 1 Ni 基超合金の耐用温度向上の歴史と物材機構（NRIM→現在 NIMS）開発合金をあわせて示す。
表 1 合金の組成（mass% Ni-bal.）

<table>
<thead>
<tr>
<th></th>
<th>Co</th>
<th>Cr</th>
<th>Mo</th>
<th>W</th>
<th>Al</th>
<th>Ti</th>
<th>Nb</th>
<th>Ta</th>
<th>Hf</th>
<th>Re</th>
<th>Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMSX-10</td>
<td>3</td>
<td>2</td>
<td>0.4</td>
<td>5</td>
<td></td>
<td>5.7</td>
<td>0.2</td>
<td>0.1</td>
<td>8</td>
<td>0.03</td>
<td>6</td>
</tr>
<tr>
<td>TMS-138</td>
<td>5.9</td>
<td>2.9</td>
<td>2.9</td>
<td>5.9</td>
<td>5.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
<td>0.1</td>
<td>4.9</td>
</tr>
<tr>
<td>TMS-162</td>
<td>5.8</td>
<td>2.9</td>
<td>3.9</td>
<td>5.8</td>
<td>5.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.8</td>
<td>0.1</td>
<td>4.9</td>
</tr>
</tbody>
</table>

しかし一方、Mo 増量は組織安定性の低下、TCP 相の析出を招くことも知られている。そこで、TCP 相の生成を防ぐ元素として効果のある Ruを増量することとした。このように設計した TMS-162の組成を TMS-138、及び比較材として用いた CMSX-10の組成と合わせて表1に示す。

3. 実験方法

ベース合金である TMS-138、及び新たに設計した TMS-162 合金の単結晶供試材を一方向凝固法により作成した。すなわち、水冷鋼板上にセットし 1500℃に加熱した単結晶セレクター付あくを秤量に、約 2kg の溶湯を秤量したのち、200mm/h の速度で秤量を加熱炉下方に引抜き、直径 10mm 長さ 130mm の単結晶棒 8 本を同時に作成した。

つぎに TMS-162 合金に適した溶体化熱処理条件の検討を行った。単結晶棒からスライスした 5mm 厚の円筒状試験片を、1280℃、1300℃、1320℃、1340℃、1360℃の各温度にてそれぞれ 2h 加熱したのち空冷し、組織観察により完全溶体化温度幅を調べた。その結果、溶体化的温度幅は 1310℃〜1350℃の約 40℃と判断された。この結果から TMS-162の最適溶体化温度として温度幅の中間値 1330℃を選んだ。

試験片の溶体化処理は、供試材をアルゴンガスで置換した石英管に封じ込んで行った。1300℃で 1 時間加熱した後に 1330℃に昇温して 5h 加熱保持したのち空冷した。その後 2段階の時効処理を施した。第 1段は 1000℃にて 4h、第 2段は 870℃にて 20h とした。

熱処理後の TMS-162 組織を図2に示す。熱処理後、平行部直径 4mm、同長さ 20mm、ねじ部を含む全長 60mmのクリープ試験片を切断及び研削加工により作製した。なお、試験片には引張り軸の方位が (001) 方向から 10°以内のもののみを使用した。

実用合金 CMSX-10 および TMS-138 はそれぞれ所定の完全溶体化処理、および時効処理 2.4）を施したものを使用した。

TMS-138、TMS-162、および比較材 CMSX-10についてクリープ試験を行った。試験条件は 1100℃/137MPa とした。1100℃/137MPa での破断後の試薬については透過型電子顕微鏡（TEM）を用いて γ/γ′界面位変網を観察した。

4. 結果と考察
4.1 クリープ試験結果

1100℃/137MPa の試験条件での合金のクリープ曲線とクリープ速度を図 3 に示す。これらの図より、CMSX-10 では、試験開始直後にわずかにクリープ速度の低下
傾向を示すものの、その後次第に加速して破断に至ることが分かる。これに対して TMS-138 及び TMS162 は、クリープ開始直後は CMSX-10 に比べてクリープ速度が大きいが、試験開始 5-10h 後でクリープ速度が低下しはじめ 20h 以降は CMSX-10 よりもクリープ速度が小さくなる。最小クリープ速度（図中 ▽ 印）でみると、TMS-138 は CMSX-10 の約 1/4、TMS-162 は 1/10 まで低下している。また最小クリープに到達するまでの時間は、CMSX-10 では寿命の約 3%、TMS-138 では約 12%、TMS-162 では約 40% と、強度が上がることも相対的により長時間側へ移動していることがわかる。

TMS-138 や TMS-162 のクリープ初期の段階でクリープ速度が大きく、ある時間でクリープ速度が減少に転じる現象は、第 2 世代の TMS-82+や第 3 世代の TMS-75 でも起こっていた 8）。このようなクリープ速度の低下はラフト組織が形成されることによって生じることが知られている 9）。よって TMS-162 でこの段階でラフト組織が形成されたことによりクリープ速度が低下したものと考えられる。

すでに述べたように TMS-162 の定常クリープ速度は小さく、また定常域は長く持続する。その結果 1%クリープ時間で既存合金と比較すると TMS-162 は TMS-138 の約 2.5 倍、CMSX-10 の約 5 倍の長時間となっている（図 4）。また、TMS-162 は新製造耐熱材料プロジェクトの目標である応力 137MPa、1000h クリープ寿命で耐用温度 1100℃を達成した。

4.2 クリープ破断材の TEM 組織観察

図 5 に 1100℃/137MPa 破断後、破面から約 6mm の位置を TEM で観察した組織を示す。なお、この位置は加速クリープによるネッキングの影響のほとんどない位置である
図4 開発合金TMS-162と既存合金との1%クリーブ時間での比較

図5 1100℃/137MPa破断後のγ/γ'界面転位網（透過型電子顕微鏡で観察）

め、ラフト化した定常クリーブ組織をほぼ残している。観察の結果、応力軸である〈001〉方位にはほぼ垂直なγ/γ'界面、すなわちラフト化したγ/γ'界面に転位網が観察された。図に示すとおり Mo量が0.4 mass%であるCMSX-10は界面転位網の転位間隔が大きく、TMS-138, TMS-162とMo量が増加していくほど転位間隔が小さくなっていた。これは、Mo増加に伴う格子定数ミスフィットが負に大きくなるため、界面ひずみを緩和するためにより緻密な界面転位網を必要とすることが原因である。図6に図5の組織から求めた平均転位間隔と1100℃/137MPaの最大クリーブ速度の関係を示す。Mo量が増加してγ/γ'界面転位網が緻密化するほど最大クリーブ速度が低下することが明らかになった。

転位が運動するとき必要とされる応力\(\tau\)は、

\[\tau = \alpha Gb/R \]

(1)
と表されることが知られている。ここで、α：定数、G：剪断応力、b：パーガークス・ベクトル、R：転位の曲率である。転位の総数が増加するほどγ'相中にボウリングする転位の曲率半径Rは小さくなるため、より大きな剪断応力が必要となる。このことが図6に示されるような関係が生じる原因となっており、より露出な転位網を有するTMS-162のクリーブ速度は低下し、長寿命化に繋がったと考えられる。

図6 界面転位網の平均転位間隔と最小クリーブ速度

5. まとめ

第4世代単結晶超合金TMS-138を基に、Moを増量することによって格子定数ミスフィットをより小さくし界面転位網を緻密にするとともに、Moを増量したことによって生じるTCP相の析出抑制のためにRuも増量したNi基単結晶超合金TMS-162を設計開発し、クリーブ強度とミクロ組織の関係を明らかにした。

(1) 開発合金TMS-162は、1%クリープひずみ時間がTMS-138の約2.5倍、実用合金であるCMSX-10の約5倍であった。

(2) γ'/γ界面転位網中の平均転位間隔が小さくなるほど最小クリーブ速度が低下することが明らかとなった。

(3) Moを最も多く添加し格子定数ミスフィットを負に大きくしたTMS-162のクリーブ破断材は、試験材中最も緻密なγ'/γ界面転位網を有しており、これがクリーブ速度低下、長寿命化に繋がったと考えられる。

(4) 開発合金TMS-162は、「新世代耐熱材料プロジェクト」の目標である137MPaで1000hの耐用温度1100℃を達成した。これは公表されたものとして世界最高である。

謝辞
本研究の遂行にあたり、共同研究者である石川島播磨重工業（株）細谷昌博氏、正木彰樹氏に多くのご助言とご協力をお願いしました。また、物質・材料研究機構研究支援部の宮代寛氏、門井稔氏ならびに新世代耐熱材料プロジェクト中澤靜夫氏に多大なご協力をいただきました。また、同プロジェクトの大沢聡真博士には有益な助言をいただきました。ここに記し、深く感謝いたします。
参考文献

CM247LC−DS合金の高溫弾性定数測定における
測定法の違いによる数値差の考察
Investigation of numeric difference by difference of high temperature elastic modulus measurement method on CMS247LC-DS alloy
○ 桜井 裕（マネジテクノセンター）
白川 理恵 同上
Yutaka Sakurai AGNE Gijutsu Center,5-1-25 Minami-Aoyama , Minato-ku ,
TOKYO
E-Mail:sakurai@agne.co.jp
Rie Shirakawa AGNE Gijutsu Center,5-1-25 Minami-Aoyama , Minato-ku ,
TOKYO
E-Mail:shirakawa@agne.co.jp
Key Words : Elastic Modulus, Ni-based superalloys, Ultrasonic Method, Resonance Method, ODF

1. 緒論
ガスタービン動翼材に用いられる材料には、高温クリープ性を向上させた一方凝固（DS）合金や単結晶合金が用いられている。① 動翼材の設計にあたっては材料の高温弾性係数の実測値を用いることが不可欠であるが、これらの材料はともに異方性を持つものなので、測定法の違いにより数値差が生じる結果についての評価が難しい。今回は超音波法について結晶方向のずれを ODF（結晶方位分布関数）関数 2）を用いて補正を実施し、共振法との違いについての考察を行った。

2. 試験材
供試材はCM247LC−DS材を用いた。パルク材の一面をマクロで組織観察できるように研磨し、組織の凝固方向を決定し、この方向を基準にして超音波法：試料形状は直径16mm径×10mm厚さ（厚さが結晶方向）、共振法：試料形状は10mm幅×2mm厚さ×60mm長さ（長さ方向が結晶方向）、ODF：測定試料は他の試料と同じく凝固方向を頂点とした16mm直径の100μ厚さの試料、以上3種類の試料を作成し実験に用いた。

3. 実験方法
弾性係数は大きく分けて共振法と超音波法の2種類の方法で求めることができる。又、集合組織の結晶方向を正確に導き出し、結果の補正を行う方法としてはX線測定からODFマッピングを行った。今回はその結果を用いて超音波法の結果補正を実施した。それぞれ以下に説明する。
1）共振法−求まる弾性係数の方向(今回は0°および90°方向)に切り出した試料で、直接その方向の弾性係数が測定できる。
共振法については、異方性試料の各部の弾性定数を求め、マクロのヤング率を計算によって算出する直方体共振法と、等方性である試料を前提として測定する片持ち共振法あるいは自由共振法がある。
本実験では共振法として後で説明する理由により片持ち共振法を採用した。片持ち共振法は日本テクノプラスによって製品化されたEG-HTにて測定し、JIS化されている自由共振法によって常温での値を検証した。
EG-HTはヤング率と剛性率を同時に測定し、内部摩擦も測定できる。測定方法に試料の一方を固定し、他方に横振動と揺り振動を与えてその共振周波数を
測定し、等方性試料を前提とした計算式でヤング率や剛性率を求めている。自由振動法では測定周波数が数百 Hz から数 kHz になるのに対し、EG-HT では数十分 Hz と低い周波数である。自由振動法では温度が上昇すると複数振動の発生と内部摩擦増加による固有振動の急激な減少による測定困難が生じるが、EG-HT は高温でも一定振動だけが見えないため、周波数の特定が非常に簡単で容易に自動測定ができる。このように EG-HT は高音域における急激な変化に対しても十分に追従でき、信頼のおける高温測定ができるといえる3)。

測定した固有振動数からヤング率を求めめる通常の共振振動法では

\[\text{振動数} = \frac{a^2}{2 \pi \text{長さ}^2 \sqrt{\text{ヤング率} \times \text{弾性 2 順モーメント}}} \]

に境界条件を代入して求める a と、振動側面の変形の疲労とその慣性モーメントを求める変動を代入して計算する。境界条件の簡単な自由振動法による測定結果と算術は等方性試料の場合 1～2% 程度である。

2) 超音波法・共振法と同様の方向から切り出した試料で、音速を測定した後、計算によって各方向の弾性定数を導き出す。

JIS Z2280「金屬材料の高周波ヤング率測定法」の超音波法の測定法に準拠した4)。

測定機器はマテックス社製 MBS-8000 型を使用して、「パルスエコー・オーバーラップ法」による音速測定を行った。先ほど同様に切り出した試料を高周波電気接続と金属箔でバッファーロッドに接着し、加熱器で昇温しながら音速変化を記録した。

一般に音速と弾性率の関係は

音速 = \sqrt{\text{関係する弾性率/密度}}

である。

一方凝固合金は多結晶ではあるが、六方対称を示すため六方晶として扱い弾性係数求めることが一般的である。尚、CMSX-4 等の単結晶合金は立方晶として計算する5)。

Hooke の法則より、六方晶系のスティッフネスマトリックスは次のように表される。

\[
\begin{bmatrix}
C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\
C_{11} & C_{13} & 0 & 0 & 0 & 0 \\
C_{33} & 0 & 0 & 0 & 0 & 0 \\
C_{44} & 0 & 0 & 0 & 0 & 0 \\
C_{44} & 0 & 0 & 0 & 0 & 0 \\
C_{66} & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[C_{66} = \frac{1}{2} (C_{11} - C_{13})\] の関係があるので、独立した弾性スティッフネスは C_{11}, C_{13}, C_{33}, C_{44}, C_{13} の 5 個である。

同様にコンプライアンスマトリックスより、独立した弾性コンプライアンスは S_{11}, S_{13}, S_{33}, S_{44}, S_{13} の 5 個である。

六方晶の主軸 (Z 軸) に対する方向余弦 \cos \theta におけるヤング率 E, ポアソン比 \nu と、弾性スティッフネスとの関には以下の関係が成り立つ。

\[E(\theta) = 4(C_{11} - C_{13} - C_{33} + 2C_{44}) / S\]
\[\nu_{xx}(\theta) = ((C_{11} - C_{13}) - C_{44}) / 2C_{11} - C_{44} / S\]
\[\nu_{xy}(\theta) = (C_{11} + C_{33} - 4C_{13}) / 2C_{11} - C_{44} / S\]
\[S = (C_{11} + C_{13} + C_{33} - C_{44}) / S\]

0° 方向における E(0°), \nu_{xx}(0°), \nu_{xy}(0°) は

(1),(2),(3)および(4)式より

\[E(0°) = \frac{C_{11} - C_{13} - C_{33} + 2C_{44}}{C_{11} - C_{66}}\]
\[\nu(0°) = \nu_{xx}(0°) = \frac{C_{11} - C_{33}}{2(C_{11} - C_{66})}\]

90° 方向における E(90°), \nu_{xx}(90°), \nu_{xy}(90°) は
E(90°) = 4 × \frac{C_{44} \left(C_{11} \cdot C_{33} - C_{23} \cdot C_{44} - C_{13} \cdot C_{22} \right)}{C_{11} \cdot C_{33} - C_{13}^2} \quad \ldots \}
摩擦ピークの結果はこれを裏付けてている図 4° 10°。ここでの筆者らが重要と感じたのは、90° 方向の結果の差である。

Fig. 4 Elastic Modulus and Internal Friction results by Resonance method

Herman さんは一方結晶合金の弾性係数の測定を共振法を用いて実施し、その結果から回帰法を使って各弾性定数を導き、ODF 関数を用いての平均化を行っている 8°。彼らは下記の各弾性定数と ODF 関数の関係式を表した。

\[
\begin{align*}
C_{11}^y &= C_{11} - 0.4C + 3a C_4^2 C \\
C_{12}^y &= C_{11} - 0.4C + 8a C_4^2 C \\
C_{13}^y &= C_{11} + 0.2C + a C_4^2 C \\
C_{13}^y &= C_{12} + 0.2C - 4a C_4^2 C \\
C_{14}^y &= C_{44} + 0.2C - 4a C_4^2 C
\end{align*}
\]

where:

\[
a = 0.006155 \\
C = C_{11} - C_{12} - 2C_{44} \\
C_4^2 : \text{coefficient of the ODF}
\]

そこで超音波法の結果で得られた各弾性定数を 0° 方向の ODF 関数 \(C_i\) で逆算した。

ODF の値を基にした結果であり、0° 方向の ODF マッピングの等高レベルと 90° 方向の等高レベルの比例関係から 90° 方向の \(C_i\) を計算した。

この値を用いて先の関係式から各弾性定数を補正し、90° の結果を再計算したのが図 5 で
Fig. 5 CM247LC-DS Elastic Modulus
(90° axis) corrected

6. 結論

1. 一方凝固合金の弾性係数は共振法と超音波法測定により求まるが、ODF 関数を補正値として代入することにより両者の値は良い整合性を持つようになる。

参考文献
1) 太田、中川：金属（1986）、No.3、P11-16
2) 長嶋：集合組織（1984）、P29-55、丸善
3) 被玉：高温学会誌、Vol.19（1993）、12月、P302-308
4) 桜井：金属（1994）、4月臨時増刊、P187-190
5) 桜井：金属（1999）、No.2、P45-48
6) W. Herman, et al: Superalloys 1996, P229-238
8) 沼倉：物理、Vol.55（2000）、No.6、P409-415
9) Y. Sakurai, I. Kodama: ATEM99, JSME-MMD (1999), P555-558
10) Y. Sakurai: CREEP7, JSME-MMD (2001), P591-595
大気プラズマ溶射による縦割れ遮熱コーティング材
の熱サイクル変形挙動

＊荒井正行（財団法人電力中央研究所）
岩田宗一（財団法人電力中央研究所）
水津幸夫（トーカロ（株））
谷和美（トーカロ（株））

1. 緒言
ガスタービン高効率化のためのキーエクノロジーとして遮熱コーティングが注目されている。周知のように、遮熱コーティングは耐熱性に優れ、熱伝導率が低いセラミックによるトップコーティング、ならびに耐酸化性と密着性に優れた合金によるボンドコーティングの2層から構成される。代表的な材料として、トップコーティング材には8wt％Y2O3-ZrO2部分安定化ジルコニアが、ボンドコーティング材にはNiCrAlYあるいはCoNiCrAlY合金が選定される。それらの粉末材料を大気プラズマ溶射あるいは減圧プラズマ溶射により喷射し、静翼表面にコーティング施工するのが一般である。

ところで、トップコーティング材と基材とは機械的特性、すなわち弾性率、線膨張係数が大きく異なるため、高温環境下においてコーティング層に大きなる熱応力を生じる。大きな熱応力の発生は、コーティング層のほく離損傷をもたらす。このため、コーティング層で生じる熱応力の正確な把握は、開発されたトップコーティング材の選定にとって必須であり、またコーティング損傷評価に際しても重要な情報をもたらす。

これまで、主にX線応力測定法[1,2]に基づきコーティング層に生じる応力（あるいは熱応力）が測定されてきた。しかし、局所的な領域での極表面近傍から得られるX線回折情報を利用することも、測定に大きな誤差があること、時間に伴う応力値の変化を即时に測定することができない、などの問題があった。

本研究では、バイメタルに基づく試験原理により、温度変動下にある遮熱コーティング部材の熱応力変形挙動をその場測定することを想定した。供試材として、現用ガスタービンに施されている遮熱コーティング8wt％Y2O3-ZrO2部分安定化ジルコニア/CoNiCrAlY合金、ならびにトップコーティングに縦割れを導入した中空造粒粉末部分安定化ジルコニア/CoNiCrAlY合金の2種類を対象として、熱サイクル条件下で生じるコーティング部材の熱変形挙動の相違を示す。

2. 試験方法
2.1 供試材および試験片 本研究で用いた供試粉末の化学成分を表1に示す。表中の左側に示される”CoNiCrAlY”はCoNiCrAlY粉末粒子（Sulzer Metco社製AMDRY9954）の化学成分、”PC-8YZ”は8wt％Y2O3-ZrO2粉末粒子（サンゴバンセラミックマテリアルズ製PC-YZ8#NF）の化学成分、“8YZ”は8wt％Y2O3-ZrO2中空粉末粒子（Sulzer Metco社製METCO204NS）の化学成分をそれぞれ表す。

図1に試験片形状を示す。本研究では、基材として機械的特性がよく知られているSUS304鋼を用い、厚さ1mm、幅10mm、長さ約100mmの矩形形状に機械加工したものを利用。なお、短冊形試験片の片側に試験片固定のための孔があてがわれる。コーティング溶射施工前に基材をアセトンに浸漬して脱脂処理を行った。その後、コーティング施工面をプラスト処理（粒度WA#60、圧力4.5kgsf/cm²）した。
表1 粉末粒子の化学成分

<table>
<thead>
<tr>
<th>ConCrAlY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>C</td>
<td>Co</td>
<td>Cr</td>
<td>Fe</td>
<td>Ni</td>
<td>P</td>
<td>S</td>
<td>Sr</td>
<td>Y</td>
<td>O2</td>
<td>N2</td>
</tr>
<tr>
<td>7.73</td>
<td>0.01</td>
<td>38.9</td>
<td>20.7</td>
<td>0.03</td>
<td>31.9</td>
<td>0.01</td>
<td>0.01</td>
<td>0.45</td>
<td>0.02</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PC-BYZ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO2</td>
<td>Y2O3</td>
<td>TiO2</td>
<td>HfO2</td>
<td>FeO3</td>
<td>Al2O3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91.55</td>
<td>8.16</td>
<td>0.16</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BZ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al2O3</td>
<td>FeO2</td>
<td>HfO2</td>
<td>MgO</td>
<td>SiO2</td>
<td>TiO2</td>
<td>ZrO2</td>
<td>HfO2</td>
<td>CaO</td>
<td>TiO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>0.02</td>
<td>1.60</td>
<td>0.01</td>
<td>0.06</td>
<td>0.11</td>
<td>7.32</td>
<td>92.18</td>
<td>0.01</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図1 試験片形状

大気プラズマ溶射装置（Sulzer Metco 社製 M-1000+F4 ガン）によりトップコーティング層厚さ 500μm、
ボンドコーティング層厚さ 100μm の厚さになるよう基材めらめにコーティング施工した。本研究では、
PC-BYZ 粉末によりトップコーティング層を、ConCrAlY 粉末によりボンドコーティング層を施工した
ものと、8YZ 中空粉末によりトップコーティング層を、ConCrAlY 粉末によりボンドコーティング層
を施工したものの 2 種類のコーティング材を用意した。前者を”従来型遮熱コーティング材”、後者
を”縦割れ導入遮熱コーティング材”と呼ぶ。

図2 に 2 種類のコーティング材の切断面観察結果を示す。図2 (a) は従来型遮熱コーティング材、図
2 (b) は縦割れ導入遮熱コーティング材を示している。図2 (a) では、開気孔が多数認められ一般によく
知られている遮熱コーティング材の組織形態が認められる。一方、図2 (b) においては、トップコーテ
ィング層中に表面から基材に向かって複数の割れが存在している。観察された割れ間隔は約 0.5mm で
あった。

2.2 試験装置および試験条件 ここではつぎのような原理に基づいて試験を行った。基材とトップコ
ーティング材との線膨張係数の相違によって、高温加熱によって試験片がたわむ。実機高温部品におい
tては、このようなたわみが拘束された状態となるので、たわみが大きければコーティング層に作用する
熱応力は大きいこととなる。本試験は、このような線膨張係数に伴って生じるたわみを利用して、加熱
温度に伴う試験片のたわみの変化をその場測定し、実機に生じる熱応力を把握しようとするもので
ある。

図3 に試験装置の概要を示す。電気炉上部に窓を開け、その窓から支持棒先端に取り付けられた試験

(a) 従来型遮熱コーティング
(b) 縦割れ導入遮熱コーティング

図2 切断面観察結果
図3 試験装置の説明図

片を電気炉中央部まで挿入する。試験片近傍にはシース熱電対をおく、試験片温度を測定した。電気炉側面にも窓を設け、長距離測定タイプのキーエンス社製レーザー変位計により、この窓から試験片のたわみ量を測定した。熱電対、レーザー変位計からの信号をコンピュータに取り込み、試験中それらを記録した。試験条件は、1サイクルが最低温度$T_{min}=200\degree C$、最高温度$T_{max}=900\degree C$の三角波形であり、10℃/分のスピードにて昇温、降温を行った。

3. 試験結果および考察

図4に従来型遮熱コーティング材の加熱温度に伴うたわみの変化を示す。図より、1サイクル目において温度上昇とともにたわみが増加する。このたわみの方向は、コーティング層側にそる方向である。その後、温度が低下するにつれてたわみも減少し、最低温度時ではもとの形状には戻らず、1サイクルの温度上昇、降下によって大きな温度ヒステリシスをもつことがわたった。すなわち、たわみが1サイクル終了後に残留する。そして、サイクル数が進むにつれて、最大たわみ値は増加するとともに、温度ヒステリシスが小さくなる。以上的ことから、実機における従来型遮熱コーティング材が温度サイクルを受けることによって、たえず引張方向の熱応力を繰返し生じることになる。

これに対して、図5に縦割れ導入遮熱コーティング材の加熱温度に伴うたわみの変化を示す。1サイクル目において温度上昇してもほとんどたわみが生じていない。また、温度ヒステリシスも小さいことがわかる。この傾向はサイクル数が増加してもほとんど変わらない。

つぎに図6に従来型遮熱コーティング材の熱サイクルに伴う最大たわみ値と最小たわみ値の変化を示す。最大たわみ値について注目すると、熱サイクルとともにゆるやかに最大たわみ値が増加するものの、約5サイクル程度でほぼ飽和することがわかる。最大たわみ値と最小たわみ値との差、すなわちたわみ振幅は、熱サイクル数に依存せずにほぼ一定である。

図7に縦割れ導入遮熱コーティング材の熱サイクルに伴う最大たわみ値と最小たわみ値の変化を示す。従来型遮熱コーティング材においては、最大15mm程度のたわみを生じていたのに対して、本材においては5mm程度と極めて低いことがわかる。また、熱サイクルが進行してもこの値はほとんど変わらない。以上のことから、従来型遮熱コーティングにおいては熱サイクル中、つねに引張方向の熱応力が生じ、縦割れ導入遮熱コーティングにおいても同様に引張方向の熱応力が生じるが、その値は極めて低い。

図8に試験終了後のコーティング表面を着色検査した結果を示す。図(a)は従来型遮熱コーティング
材、図(b)は縦割れ導入延熱コーティング材を示している。従来型延熱コーティング材においてはコーティング表面においてほとんど割れが観察されない。これに対して、縦割れ導入延熱コーティング材においては、施工時に導入した縦割れに加えて、細かな亀の甲羅状の割れが無数に発生している。

以上のことより、図2に示すほど等間隔でのコーティング施工時の割れセグメントが熱サイクル中、熱応力緩和を促進し、熱サイクル試験中おきなたわみが生じなかったものと考えられる。

4. 結論
本研究では、バイメタルに基づく実験原理により、温度変動下にある延熱コーティング部材の熱応力変形挙動をその場測定することを考察した。供試材として、現用ガスタービンに施されている延熱コーティング8wt%Y₂O₃-ZrO₂部分安定化ジルコニア/CoNiCrAlY合金およびトップコーティングに縦割れを導入した中空造粒粉末部分安定化ジルコニア/CoNiCrAlY合金の2種類を対象として、温度変動中に生じるコーティング部材の熱変形挙動の相違について調べた。その結果、従来型延熱コーティングにおいては熱サイクル中、大きなたわみを生じる。すなわち、実機においてはつねに引張方向の熱応力
(a) 従来型遮熱コーティング材の表面状態

(b) 窓割れ導入遮熱コーティング材の表面状態

図8 熱サイクル試験終了後のコーティング表面の損傷状態

が生じることが明らかとなった。これに対して、窓割れ導入遮熱コーティングにおいて測定されたたわみ値は従来型遮熱コーティング材に比べて1/3と極めて低い。また、熱サイクル数にともなうたわみ量の大きな変化は認められなかった。このため、窓割れ導入遮熱コーティング材において溶射施工時に導入した窓割れセグメントは、熱応力緩和にとって極めて有効であることが明らかとなった。

謝辞
本研究は、経済産業省資源エネルギー庁から（財）エネルギー総合工学研究所へ委託された「電力技術開発プロジェクトに係る事前可能性調査」の一環として平成14年度「発電用ガスタービン高効率化のための環境制御型インテリジェントコーティング材料の創製と評価に関する調査」のもとで実施した。関係者各位に、深甚なる謝意を表す。

参考文献
遮熱コーティング界面酸化過程に及ぼす
試験片形状・種類ならびに雰囲気の影響

荒井正行（財団法人電力中央研究所）
岩田守一（財団法人電力中央研究所）
＊岡田芳史（東京工業大学大学院）
岸本遠雄（東京工業大学）

1. 結言
遮熱コーティング（TBC）の熟損傷は、高温環境のもとでトップコーティングとボンドコーティングとの界面において生成した熱酸化反応（Thermally Growth Oxidation: TGO）層に起因し、界面での密着力が低下することによるもの[1,2]とされている。このために、TGO層の生成原因やその成長過程を把握することは、TBCの熟損傷を未然に防止するうえで重要である。しかし、これまでの研究[3,4,5]によると、限られた一定温度条件のもとでTGO層の成長過程が調べられているものの、幅広い温度条件におけるTGO層の成長過程やその成長メカニズムについて詳しく調べたものはほとんど見当たらない。

このため、著者ら[6]は、遮熱コーティングとして8wt%Y2O3-ZrO2/CoNiCrAlY/HA188の組合わせを対象に、700℃～1000℃までの温度範囲、最長1000時間におけるTGO層成長過程ならびに成長メカニズムについて検討してきた。この結果、700℃以下の温度条件においてはTGO層をトップコーティング層とボンドコーティング層界面で生成しないこと、1000℃までの条件ではAl2O3単相のTGO層を同界面で生成し、三軸にしたがって成長すること、同一温度以上ではAl2O3単相酸化物に加えて（Co,Cr,Al）の複合酸化物も生成し、三軸則に従わずなる成長を明らかにした。そこで、酸化物成長過程が外部環境からコーティングへの酸素浸透、主酸化物としてのアルミニウムの移動と核増に支配されるものと考えると、コーティング厚さ、ボンドコーティングならびに基材中に含まれるアルミニウム量に依存して、雰囲気温度、時間が同じ条件下でもTGO成長挙動が異なることが予想される。

そこで本研究では、8wt%Y2O3-ZrO2/CoNiCrAlY遮熱コーティングを対象に、1) トップコーティング層厚さを0, 0.3, 1.0mmと変化させた場合、2) Co基超合金HA-188とNi基超合金MA-263と異なる2種類の基材を用いた場合、3) 高温不変態状態を大気雰囲気中とアルゴン雰囲気中に対し、それぞれTGO層成長過程に及ぼす影響を明らかにし、遮熱コーティングにおける界面酸化のメカニズムを把握することを目的とする。
図1 試験片形状

2. 2 試験装置および試験条件　加熱試験には2種類の試験装置を用いた。一つは、大気と高温暴露試験に用いた試験装置であり、ニクロム線ヒータにより炉内を一定温度に加熱する箱型電気炉である。セラミックの金や管内に挿入したKタイプシース熱電対を炉内の中央部に設けることにより炉内温度を管理した。もう一つは、アルゴンガス環境下で高温暴露試験に用いた試験装置であり、管状炉中心部に試験片を挿入した真空ガス管を挿入し、ガス管内には真空排気用バルブをアルゴンガス注入用バルブがついている。試験においては、まずガス管内部を真空排気した後に、アルゴンガスを導入し、
大気圧下で高温暴露試験を行った。いずれの加熱試験においても10℃/分で所定の温度まで昇温した。加熱条件は、700, 800, 900℃とし、最大加熱時間を1000時間とした。

3. 試験結果および考察
3.1 基材の相違がTGO層成長過程に及ぼす影響　トップコーティングを8wt%Y2O3-ZrO2, ポンドコーティングをCoNiCrAlYとしたときに、基材の相違がTGO層成長過程にどのような影響を及ぼすか調べた結果を図2に示す。図中、白抜きシンボルがコバルト基超合金、黒シンボルがニッケル基超合金の結果をそれぞれ対応している。加熱温度条件は、いずれも単相酸化物を生成する温度領域（800℃, 900℃の2種類）とし、図より、同一加熱温度条件下において、両基材ともにTGO層の成長速度がほとんど一致していることがわかる。よって、TGO層成長過程に及ぼす基材の種類の影響は極めて小さいものといえる。

3.2 トップコーティング厚さの相違がTGO層成長過程に及ぼす影響　つぎに、トップコーティングを8wt%Y2O3-ZrO2, ポンドコーティングをCoNiCrAlY, 基材をコバルト基超合金HA-188としたときのトップコーティング厚さの相違がTGO層成長過程にどのような影響を及ぼすかを調べた結果を図3に示す。図にはトップコーティング厚さ0.0mm (セラミックコーティングなし), 0.3mm, 1.0mmの3種類の結果が示されている。図より、同一加熱温度条件下において3種類のトップコーティング厚さとともに界面上成長速度がほとんど一致していることがわかる。このことから、トップコーティング厚さがTGO層成長過程に及ぼす影響は小さい。すなわち、トップコーティング層は酸素に対するバリアーにはなっていないことがわかる。
図2 基材の相違がTGO層成長挙動に及ぼす影響

図3 コーティング層厚さがTGO層成長挙動に及ぼす影響

図4 傾圧気がTGO層成長挙動に及ぼす影響

3.3 傾圧気の相違がTGO層成長過程に及ぼす影響　最後に、トップコーティングを8wt%Y2O3-ZrO2、ボンドコーティングをCoNiCrAlY、基材をニッケル基超合金MA-263としたときに、傾圧気の相違がTGO層成長過程にどのような影響をもたらすか調べた結果を図4に示す。傾圧気は大気とアルゴンの2条件である。図より、アルゴン中では熟コーティングが失われると、TGO層はほとんど生成しなくなる。高温高時間側になるとTGO層が2ミクロン厚さ程度に生じていたが、これは溶射施工時にセラミックス層内のポアに取り込まれた残存酸素によるものと考えられる。このことから、塩酸コーティングがおかれている環境の影響は極めて大きい。このため、今後、酸素分圧、圧力などの環境状態を変え
図5 TGO層成長式によるTGO層厚さの推定結果

たさまざまな試験を行う必要がある。

4. 大気雰囲気下でのCoNiCrAlYボンドコーティングのTGO層成長則

以上の結果から大気中、いかえれば同一酸素分圧下において、基材の種類、トップコーティング層厚さに依存せず界面で生成したTGO層は、加熱温度条件が等しければ、加熱時間とともに等しく成長することがわかった。このため、著者らによってすでに明らかにされているつぎのTGO層成長式[6]が、本研究を通じて得られたアルゴン雰囲気を除く全ての試験結果に適用し得るか調べた。その結果を図5に示す。なお、TGO成長式は、

\[d = k_0 \exp \left(- \frac{E}{RT} \right) t^{1/2} \]

(1)

である。ここで、\(k_0 = 987160 \mu m/h \), \(E \) は活性化エネルギーであり 120kJ/mol, \(R \) はガス定数, \(T \) は絶対温度をそれぞれ表す。図の横軸はSEMによるTGO層厚さの実測値、縦軸は式(1)による推定結果を示している。この結果、基材の種類、コーティング厚さの相違によらず式(1)のTGO層の成長式によってTGO層成長量をほぼ正確に予測できることが確認できた。

5. 結論

本研究では、8wt％Y2O3-ZrO2/CoNiCrAlY遮熱コーティングを対象に、1)トップコーティング層厚さを 0, 0.3, 1.0mm と変化させた場合、2) Co基超合金 HA-188 と Ni基超合金 MA-263 と異なる2種類の基材を用いた場合、3)高温暴露環境を大気中とアルゴン雰囲気中にした場合、にそれぞれ TGO層成長過程に及ぼす影響を調べた。この結果、トップコーティング層厚さ、基材の種類がTGO層成長過程に及ぼす影響は極めて少ないことが明らかとなった。一方、試験環境がTGO層成長過程に及ぼす影響は大きい。最後にボンドコーティング層中の微細粒子表面をアルミナ粒子原子が高温拡散することによりTGO層が成長するというTGO層成長式を用いて、大気雰囲気での試験から得られたTGO層厚さの時間変化を精度よく推定できることができた。今後、同成長式で雰囲気中の酸素分圧の影響を考慮し、
成長式の適用範囲を広げてゆく予定である。

参考文献
[3] 中森, 高橋, 第41期腐食防食討論会, C-308, 383
タービン用セラミック材料の衝撃特性
(第2報)

*吉田博夫（産総研）
李 銀生（富士総研）

1. はじめに

無冷却で1,000℃を超える温度で運転できるセラミックガスタービン（CGT）はガスタービンの究極の姿の一つといえる。我が国においてこれまで100kWクラスならびに300kWクラス1のセラミックガスタービンの研究開発が行われたが、未だ実用にまでは至っていなかった。その原因の一つはセラミック要素の耐衝撃性(Foreign Object Damage, FOD)に関する信頼性が十分ではないことにある。

セラミック要素は体積が小さくなるほど欠陥の含まれる確率が低くなる。

CGTの小型化は信頼性を向上させる方向にあるので、セラミックの適用に対して有利になる。この意味でロータ直径5〜7cm程度となる数kWクラスの超小型CGTの研究開発は試みる価値があると言える。これまでガスタービンへの適用を念頭にセラミックの耐衝撃性に関する研究は数多くされてきた2,3,4)。しかしながら、異物が衝突して(局所的)破壊が生じる際の臨界条件に関する情報は必ずしも十分ではなく、さらなる検討の余地が残されていると思われる。本稿では引き続き前回の検討5)を押し進め、サマリウム・コバルトに加えて炭素鋼やセラミック小球が衝突する場合の衝撃応力履歴について解析を行った。

2. 解析条件

直径1mmのサマリウム・コバルト、炭素鋼、セラミック球が速度vでセラミックの無限平板に衝突する状況を考える(図1)。セラミックはSN252材料（京セラ）を想定した。解析に際し次の仮定をした：1）応力・ひずみ場は衝突球中心と接触点を結ぶ直線に関して回転対称であり、2）セラミック円盤の横ならびに下側の境界は自由支持(拘束なし)とする。着目する時間内に境界からの反射波の影響を除くために、横方向ならびに下側にそれぞれ20Dの長さをとった。Dは衝突球の直径である。使用した材料の機械特性をTable1に示す。

Table 1 Mechanical properties of ball and target materials used in this study

<table>
<thead>
<tr>
<th></th>
<th>Ball, Sm2Co17</th>
<th>Carbon steel</th>
<th>Target/ball, ceramic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density, g cm⁻³</td>
<td>8.4</td>
<td>7.8</td>
<td>3.4</td>
</tr>
<tr>
<td>Young's modulus, GPa</td>
<td>151</td>
<td>206</td>
<td>309</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.26</td>
<td>0.3</td>
<td>0.28</td>
</tr>
</tbody>
</table>

*: Samarium-cobalt ferromagnetic ball was used.
**: Carbon steel (API-5L-X52) and ceramic (assumed Kyocera SN252 type) are used as the impactor in section 3.4.
3. 解析結果
まずは従来と同じくφ1mmのサマリウム・コバルト球がセラミック板に衝突する時の衝撃荷重について計算した結果をFig.3に示す。衝撃荷重は速度とともに増加している。考察した速度範囲ではv^2、$n \approx 1.6$のように表現される。

3.1 炭素鋼球がセラミック板に衝突する場合
衝突球の材料として代表的な構造材である炭素鋼を考えた。その際、降伏応力や加工硬化係数の値を変化させそれらの影響についても計算した。調べた材料特性範囲をTable2に、衝突応力の時間変化をFig.4に示す。衝突応力は、衝突荷重を接触面積で

<table>
<thead>
<tr>
<th>Case</th>
<th>Stress/strain</th>
<th>Young's, E modulus, GPa</th>
<th>Yielding stress, MPa</th>
<th>Strain hardening modulus</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>X52_1</td>
<td>Elastic-plastic</td>
<td>206</td>
<td>359</td>
<td>7E/1000</td>
<td>Baseline</td>
</tr>
<tr>
<td>X52_2</td>
<td>Elastic-plastic</td>
<td>206</td>
<td>359</td>
<td>0</td>
<td>Complete elastic-plastic</td>
</tr>
<tr>
<td>X52_3</td>
<td>Elastic-plastic</td>
<td>206</td>
<td>538.5</td>
<td>7E/1000</td>
<td>1.5 times larger yield stress than the base line</td>
</tr>
<tr>
<td>X52_4</td>
<td>Elastic-plastic</td>
<td>206</td>
<td>718</td>
<td>7E/1000</td>
<td>2 times larger yield stress than the base line</td>
</tr>
</tbody>
</table>

Base line is of carbon steel API-5L-X52.

Table 2 Assumption for each case

Fig.1 Mesh system of impact particle and target
Fig. 2(a) Stress-strain curve, Sm$_2$Co$_{17}$

Fig. 2(b) Stress-strain curve, SN252

Fig. 3 Maximum impact load by 1 mm diameter samarium-cobalt ball as a function of impact velocity.
割った値とした。この意味で、以後衝突応力を衝突圧力と呼ぶことにする。Fig. 4 に示されるように応力の時間変化には二つの異なる段階がある。最初の段階では圧力が最大値まで急激に増加する。それに続く第二の段階では圧力が徐々に減少する。最も高い降伏応力の時に最も大きな衝突圧力がもたらされている（case X52_4）。衝突圧力が最も小さいのは加工硬化率が 0 の場合となっている（case X52_2）。圧力が徐々に減少する第二段階では、降伏応力ならびに加工硬化率の影響がより明らかに見られる。ここで、液滴衝突の場合の発生圧力は水平の点線で示した。この圧力は \(\rho_1 c_1 \rho_2 c_2 v / (\rho_1 c_1 + \rho_2 c_2) \) で定義される。\(\rho, c, v \) はそれぞれ密度、音速、衝突速度である。添え字 1, 2 はそれぞれ液滴、非衝突体の量であることを示す。材料の音速（無限に広い媒質中を伝わる）は \([(\lambda + 2\mu)/\rho]^{1/2} \) によって計算した。\(\lambda, \mu \) はヤング率で、\(\rho \) は剛性率である。この液滴衝突圧力が高い衝突強度が、炭素鋼球がセラミック板に衝突するときの最大衝突圧力のよい近似値を与えては大変興味深い。

3. 2 サマリウム・コバルト球がセラミック板に衝突する場合

衝突圧力の時間履歴を Fig. 5 に示す。加工硬化率は、正確なデータが入手できなかったので、ヤング率の 1/1000 と仮定した。前節炭素鋼の場合と同様に、液滴衝突理論が最大衝突圧力の良い近似値を与えていることがわかる。以上の結果をまとめてみると、金属球がセラミック板に衝突する場合、最大衝突圧力の大きさの程度は液滴衝突理論によっておおよその見当もつきができると言える。

3. 3 セラミック球がセラミック板に衝突する場合

結果を Fig. 6 に示す。Case-1、2 は加工硬化率をそれぞれヤング率の 1/3、0 とした場合である。降伏応力はともに 4.3 GPa とした。セラミック衝突球の場
合も炭素鋼の場合と同様に加工硬化率の大きい場合の方がより大きな衝突圧力をもたらしている。しかしながら金属衝突球の場合とは異なり、数値解析による最大衝突圧力は液滴衝突理論による圧力よりも明らかに大きな値となってい
る。金属衝突球とセラミック衝突球の結果を比べると、衝突球と被衝突体とのヤング率ならびに降伏応力の組み合わせが大きな役割を演じていることがわかる。
衝突球のヤング率と降伏応力が被衝突体のそれに比べてずっと小さい場合には、液滴衝突理論が適用可能と思われる。

4．まとめ

セラミックガスタービンの衝撃破壊の転移応力条件に関する情報を蓄積する目的で、粒子衝撃に関する有限要素法解析を行った。衝突粒子は直径1mmの球で材質は炭素鋼、サマリウム・コバルト、セラミック（被衝突体と同じ材料）とした。
解析による最大衝突圧力は材料の降伏応力や加工硬化率により変化するが、炭素鋼やサマリウム・コバルトなどのセラミック被衝突体に比べて“柔らか”粒子が衝突する場合の最大衝突圧力の大きさの程度は、おおよそ液滴衝突理論から計算される圧力値で見積もれることがわかった。しかしながら、セラミックのような“硬い”材料の場合には当てはまらない。液滴衝突理論で使用される材料の音速はラメ常数、剛性率、密度、などによって決まる。なぜこのように材料の弾性の性質から計算される液滴衝突理論の結果が妥当な推定値を与えるかはさらに検討する必要がある。
本研究は、科学技術振興事業団との間で戦略的基礎研究推進事業の一環として契約された「資源循環・エネルギーミニマムシステム技術」研究領域内の「超小型ガスタービン・高度分散システム」研究の成果である。

Fig.5 Time variation of the impact pressure caused by the samarium cobalt impactor. Liquid impact formula \(\rho_1 c_1 \rho_2 c_2 v/(\rho_1 c_1 + \rho_2 c_2) \).
Fig. 6 Time variation of the impact pressure caused by the ceramic impactor. Ceramic_1 and _2 indicate the cases of strain hardening modulus = $E/3$ (100 GPa) and 0, respectively. Liquid impact formula: $\rho_1 c_1 \rho_2 c_2 V / (\rho_1 c_1 + \rho_2 c_2)$.

参考文献
1) 特集「300kW セラミックガスタービン」, ガスタービン学会誌, 27, 5 (1999).
5) 吉田, 李, 第 30 回ガスタービン定期講演会講演論文集, pp. 251-256 (2002).
産業用ガスタービン遮熱コーティングの信頼性向上技術

*金子 秀明（三菱重工業㈱ 高砂研究所）
鳥越 泰治（三菱重工業㈱ 高砂研究所）

1. 緒言
発電用ガスタービンは、熱効率向上の観点から、蒸気タービンと組み合わせたコンパインドプラント用として注目を浴びている。ガスタービンの熱効率向上はタービン入口温度（以下、TITと称す）の上昇によるところが大きく、現在では、TITが1500℃級のガスタービンが開発・運転されている。このTITの上昇は、高温部品の冷却構造とそれに使用される耐熱合金の改良・開発によりなされており、1500℃級ではコーティング技術もその性能を担う重要な役割を占めている。

遮熱コーティング（以下、TBCと称す）は冷却空気低減によるプラントの効率化が図れるとともに塗料の温度上昇を防ぐ有効な手段であるが、その信頼性確保には、TBCの品質維持や使用中の劣化に伴う耐久性を確保することが重要である。そのため、TBC耐久性評価法はこれまでいくつか検討されてきている。

本研究では、TBCの品質管理や耐久性評価に有効な手段として、ミニュチュアサンプルを用いた静的曲げ試験による密着力評価並びにレーザー熱サイクル試験による耐久性評価について検討を行った結果について報告する。また、遮熱性能評価のためのレーザー加熱による熱伝導率測定結果についても紹介する。

2. 静的曲げ試験による密着力評価
2.1 曲げ試験方法
TBC界面近傍での密着力評価のため、図1に示す板状ミニュチュア試験片を用いて静的曲げ試験を実施した。供試材は、基材にNi基超合金を用い、トップコートはY2O3-ZrO2（以後YSZと称す）0.5mm、ボンドコートはCoNiCrAlY 0.1mmとし、各々大気プラズマ溶射と低温プラズマ溶射で施工後、拡散熱処理を行い試験に供した。なお、トップコートの施工では通常のプロセスAと施工条件を著しく変えたプロセスBを使用した。試験は、試験片の両端を偏心させたUリンクに接着し、室温で圧縮荷重することによりTBC試験部に曲げひずみを与えた。試験中、走査型電子顕微鏡により荷重に伴うTBC内の割れ進展挙動の観察を行い、TBC表面の縦割れ発生から横割れに至る挙動と表面ひずみ（ひずみゲージとストローケの関係で算出）の関係を求めた。

2.2 曲げ試験結果
各供試材について、荷重過程における縦割れ発生限界ひずみ、横割れ発生限界ひずみ、横割れ発生後の進展速度に着目して整理した結果を表1に、TBC内での割れ長さと表面ひずみの関係を図2に示す。通常のプロセスAでは、最初に縦割れが発生した後、約1%の表面ひずみに約0.5%の縦割れ発生時に、表面付近に縦方向に進展が変わり、その後、徐々に割れが進展した。プロセスBでは、縦割れ発生後、約0.7%の表面ひずみに約0.37%の縦割れ発生で横方向に進展が変わり、
その後、割れが急速に進展した。試験後の横割れ発生状況及び剥離面の観察結果を図3に示すが、溶射時に生成された層状組織の未溶着部がAに比べてBのプロセスに多く、Bの界面密着力が弱いことが進展を加速したと考えられた。
以上の結果より、横割れ限界ひずみやその後の進展挙動に着目した本手法は、品質判定法として有効であることがわかる。

表1 試験結果

<table>
<thead>
<tr>
<th></th>
<th>TBC表面ひずみ値(%)</th>
<th>剥離面の観察</th>
<th>剥離位置</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aプロセス</td>
<td>0.4</td>
<td>0.9〜1.1</td>
<td>比較的</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.45〜0.55]</td>
<td>硬質な</td>
</tr>
<tr>
<td>Bプロセス</td>
<td>0.6</td>
<td>0.7〜0.8</td>
<td>極端</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.35〜0.40]</td>
<td>軽質</td>
</tr>
</tbody>
</table>

判定

<table>
<thead>
<tr>
<th></th>
<th>同じ</th>
<th>同じに差異がある</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>差異がある</td>
<td>同じに差異がある</td>
</tr>
<tr>
<td></td>
<td>同じに差異がある</td>
<td>同じに差異がある</td>
</tr>
</tbody>
</table>

図2 TBC内でのき裂長さと表面ひずみの関係

図3 試験後の横割れ発生状況及び剥離面の観察結果（Aプロセスの例）

3. レーザー熱サイクル試験による耐久性評価

3.1 熱サイクル試験方法

タービン翼では運転中にTBC内に温度勾配が生じた状態で熱サイクルが繰り返されるため、劣化損傷状態や温度一熱ひずみの位相を模擬する上で、温度分布の模擬は不可欠である。このため、実験の温度勾配を模擬できる図4のCO2レーザー熱サイクル装置を用いてTBCの熱サイクル耐久性を評価した。供試材は前述2項と同様とし、試験片形状は、翼の一部を模擬した円筒型試験片を使用した。試験はTBC表面中央付近にレーザー照射を行い、円筒試験片の内面に冷却空気を一定量流入し、実翼運転中の状態と同様TBC内に温度勾配を設け、約3.5分周期の熱サイクルを与えた。試験中の各場所の温度変化をそれぞれ、TBCの表面温度は放射温度計で、基材温度は肉厚方向に数点
埋め込まれた熱電対で計測し、TBCの表面、界面および基材裏面の温度変化を把握した。TBCの剥離寿命は基材に埋め込まれた熱電対が安定状態より著しく変化した時点の熱サイクル数とした。

3.2 熱サイクル試験結果

試験片板厚方向の任意位置での温度履歴計算例を図5に示す。また、試験後の断面ミクロ組織観察結果を図6に示す。損傷状況は、前述熱的曲げ試験の場合と同様傾斜がTBC表面より発生し、界面付近のトップコート内で傾方向に進展していた。同一試験温度条件での剥離寿命を比較して図7に示す。施工プロセスの熱サイクル特性に及ぼす影響は、前述の静的曲げ試験結果と同様、Aプロセスに比べてBプロセスで耐久性が低下する傾向となった。これより実際を模擬した熱サイクル耐久性評価においても界面近傍の密着度が重要であると考えられた。

図4 CO₂レーザー熱サイクル試験法

図5 温度履歴計算例

図6 熱サイクル試験後の断面ミクロ組織観察

図7 施工プロセスの熱サイクル特性に及ぼす影響

4. レーザー加熱による熱伝導率測定

4.1 試験方法

TBCの遮熱性能は冷却効率に大きく影響するため、施工時の冷却率の中のTBCの熱伝導率を良好な精度で把握し、設計や寿命評価に適切に反映することが重要である。一般に、熱伝導率の測定にはレーザーオフランシュ法が適用されるが、EB-PVDや使用戦では、TBC施工後のみを分離する必要があり、その形状から適用が困難であるため、前述のレーザー加熱装置を用いて、熱伝導率測定への適用性について検討した。

4.2 試験結果
前述の３節と同様，YSZを供試材として平板試験片の板厚方向の温度変化を測定した結果を図8に示す。熱伝導率は定常時の板厚方向温度勾配より求めた。本手法で算出した熱伝導率とレーザーフラッシュ法のそれとを比較して図9に示す。両者はほぼ一致しており, 本手法が熱伝導率測定に有効であることがわかる。次に, 本手法を用いて長時間加熱材の熱伝導率を推定した結果を図10に示す。加熱時間が長くなるに伴い熱伝導率が上昇する傾向があり, 原因として加熱に伴う気孔率の減少等が考えられた。

図8 レーザー加熱による熱伝導率計測時の温度変化

図9 異なる測定法による熱伝導率比の比較

図10 長時間加熱材の熱伝導率測定例

5. 結言
産業用ガスタービンに適用されるTBC耐久性評価法として, 静的曲げ試験並びにレーザー熱サイクル試験の検討を行った。前者は, 界面近傍での横割れ発生抵抗をみその後の進展効果の定量評価により品質判定が可能であること, 後者は, 実験TBC内の温度勾配を模擬した熱サイクル試験により, TBC耐久性の定量評価が可能と考えられた。更に, 熱伝導率の評価にレーザー加熱法を適用し, 劣化材等各種TBCの評価に効果あることを確認した。

参考文献
2) 高橋秀明他: セラミックス 29 No.7, (1994) P603
産業用大型ガスタービンの更なる信頼性向上について

赤城 弘一（三菱重工業（株）高砂製作所）

1. はじめに

近年、世界環境会議やISO14000等の規制によりNOxはもちろんCO2削減等環境問題の重要度が高まっている。これに伴い火力発電の分野において、ガスタービン及びガスタービン排ガスの熱回収によって得られた蒸気を用い、タービンにて発電するコンパインドサイクルプラントが、その優れた総合熱効率により脚光を浴びている。当社では1981年にタービン入口温度が1150℃級の50Hz向大容量ガスタービンMT701Dガスタービンを開発し、世界初の大型コンパインドサイクルプラントとして東北電力株式会社東新潟火力発電所第3号機に設置した。このプラントは、総合熱効率44%と当時では記録的な値を達成した。その後、効率化をめざして更なるガスタービンの高温化を図り、1989年にはタービン入口温度1350℃級F形ガスタービンを開発した。現在このM501F/M701F（以下Fシリーズと呼ぶ）ガスタービンは国内外のコンパインドサイクルプラントの主機として120台を超える受注実績をあげ、その優れた性能を発揮している。また総運転時間は170万時間を超えこの間の平均無欠損率は、ほぼ100%である。その後、更なる火力発電プラントの総合熱効率向上に対する社会的ニーズを背景に、当社の信頼性ある高温ガスタービンの開発技術力により、1500℃級M501G/M701G（以下Gシリーズと呼ぶ）ガスタービンが開発された。Gシリーズガスタービンは、東北電力株式会社東新潟火力発電所第4号機で総合熱効率50%以上を達成した。現在15機のGシリーズガスタービンが順調に運転中でありほぼ100%の高残値率を達成している。本論文では、既設のガスタービンの信頼性を更に向上させるための打ち手である、“既存機種への開発によって増わされた最新要素技術のフィードバック”と“最新の予防保全技術の採用”について紹介する。

2. 最新の要素技術を既存機種へフィードバックすることによる信頼性向上

新機種を開発するときは、できるだけ既存機種の構造を継承するように設計をおこなう。これにより新機種は、“よい遺伝子”を受け継ぐことができる。一方、既存機種は新機種にて効果が確認された最新の技術を“フィードバック”することにより、さらに信頼性のある機器に成長する。このプロセスを継続実施することで機器の信頼性を確実に向上させることができる。

ここでは、F, Gシリーズガスタービンの運転実績とFシリーズガスタービンへ“フィードバック”された最新技術について述べる。

2.1 Gシリーズガスタービン開発および実績

Gシリーズガスタービンは十分な運転実績を持つFシリーズガスタービンから継承された基本構造に、様々な要素研究とケースモデル試験にて検証し、さらに、高性能化・高信頼化に対応する最新要素技術を適用されたものである。また実運用における健全性を検証するために、M501G形ガスタービンの初号機を当社高砂製作所内に建設した長期信頼性実証設備（ガスタービン出力225MW, 蒸気タービン出力105MWの多軸型コンパインドプラント）に設置している。
これは1997年6月に運開後、DSS中心に運用されており、定期点検時の検査にて高温部品劣化状況を確認している。現在M501G形ガスタービンは実証機以外にも海外で運用されており全プラントの燃焼時間36,000時間（総起動回数1,600回）を超え、実証機を含む全号機のリライアビリティは99.8%である。一方M701G形ガスタービンは、東電関東新潟火力発電所第4号機にて世界初のタービン入口温度1500℃級商用火力ガスタービンとして平成10年10月から運転を開始し、平成11年7月運開以降総運転時間は55,000時間を超えている。このプラントのリライアビリティは100%を達成している。

2.2 Fシリーズガスタービンの運用実績
Fシリーズガスタービンの単機出力はM701F形で270MW/M501F形で185MW（@ISO条件）であり、高い信頼性・稼働率を達成している。図2にFシリーズガスタービンでの運転実績を示す。初号機は1989年から運転を開始しており、このうち最長運転機は60,000時間/1,500回以上の運転実績がある。総運転時間は1,700,000時間、総起動回数19,000回以上である。

2.3 F形ガスタービンへの最新要素技術のフィードバック
前項で示したGシリーズガスタービンの開発・検証によって採用された最新の翼冷却技術や、高温強度に優れた材料等のFシリーズへの適用状況を説明する。

1）高温部品材料への適用
タービン動静翼は、表1に示すように最新の高強度材であるMGA1400/MGA2400を順次適用している。これに変更した後も従来と同様の運用を行う事で高温部品の劣化を軽微に抑える事が可能になり高信頼性の維持を図る事が可能となる。

<table>
<thead>
<tr>
<th></th>
<th>オリジナル</th>
<th>ブレートタイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>タービン第1段静翼</td>
<td>ECY768</td>
<td>MGA2400+TBC</td>
</tr>
<tr>
<td>タービン第2段静翼</td>
<td>ECY768</td>
<td>MGA2400+TBC</td>
</tr>
<tr>
<td>タービン第3段静翼</td>
<td>X45</td>
<td>MGA2400</td>
</tr>
<tr>
<td>タービン第4段静翼</td>
<td>X45</td>
<td>X45</td>
</tr>
<tr>
<td>タービン第1段動翼</td>
<td>IN738</td>
<td>MGA1400DS+TBC</td>
</tr>
<tr>
<td>タービン第2段動翼</td>
<td>IN738</td>
<td>MGA1400+TBC</td>
</tr>
<tr>
<td>タービン第3段動翼</td>
<td>IN738</td>
<td>MGA1400</td>
</tr>
<tr>
<td>タービン第4段動翼</td>
<td>IN738</td>
<td>MGA1400</td>
</tr>
</tbody>
</table>

表1 改良材料の適用例
動翼材のMGA1400合金は、通常の精密鋳造方法以外にもDS（Directionally Solidified：一方向凝固）での製造も可能である。図3にその外観と強度特性を示す。従来適用されていたIN738LC材と比較して、動翼強度において支配的となるクーリング強度の面でDS翼では50℃、通常鋳造翼でも30℃高い使用温度で同等の強度を有している。

一方、静翼用材料としてはMGA2400がある。図4にその外観と強度特性を示す。MGA2400材は高いクーリング強度を維持しつつ優れた低サイクル疲労強度・耐高溫酸化性・耐高温腐食を有している。また、溶接性も良好であり補修性も優れている。

さらに、遮熱コーティング（TBC）も材料のマテリアル温度を低く維持するために重要である要素であり、現状ではターピン前方段動翼に適用されている。

2）高温部品マテリアル温度の低減

ガスターピン高温部品の信頼性及び耐久性の向上においては冷却性能の改善によるマテリアル温度低減が不可欠な事項である。これについても開発によって培われた最新冷却設計技術を適用している。

3）動静翼への最新技術のフィードバック例

上述した最新技術事項を反映したターピング動静翼での改良例を示す。ターピン第1段静翼は、材料特性の優れたMGA2400への翼材変更とあわせ、図5に示す通りシュラウド変形防止リブ追加、全面TBCコーティングの適用、シュラウド端部冷却孔追加を適用している。またターピン第1段動翼は、翼材料をMGA1400DSへ変更すると共に図6に示すように内面ターピュレータ改良、プラットフォーム端面冷却強化、チッププラグ省略、全面TBC適用などによる改良を図っている。
3. 最新予防保全技術を採用することによる信頼性向上

営業運転開始してからの長期にわたる信頼性を確保するためには各プラントによる固有の条件（燃料、環境等）の影響を把握して先手の対応を実施することが重要である。この対応はいまで主にユーザーの領域であり、メーカーとしてはユーザーからのデータにより関連情報を提供することと、点検時に機器の状況確認ができるだけであった。しかし最近では、プラント運用時期であってもメーカーとして信頼性向上に貢献できるRMC（Remote Monitoring Center：遠隔監視センター）、機器の先進保護システムにシステムする技術と、L T S A（Long Term Service Agreement：長期メンテナンス契約）という体制にて更なる高機能化を図っている。この詳細を以下に記述する。

3.1 RMC（Remote Monitoring Center：遠隔監視センター）での監視

遠隔監視とは、全世界のプラントの運用状況を数ヶ所の遠隔監視センターに表示しそれを熟練した監視員が確認することによりガスタービンの状態変化を早期に発見するシステムである。また、監視員だけでなく、設計関係者も同時に対応のために、原因調査のすばやい対応も可能となっている。図7に海外プラントの遠隔監視状況を示す。発電プラントの運転状態をインターネット経由にて日本（高砂製作所）と米国（オーランド；MPS）の2ヶ所にある遠隔監視センターに同時に表示し、2ヶ所にて24時間体制で監視を実施している。遠隔監視センターでは

(1) ブリアラーム監視

計測値が“制限値”から逸脱した場合にアラームが自動発信し検知する。（図8参照）

(2) トレンドデータ監視

計測値の経時変化を監視し“ある変化幅”を超えた場合を検知する。

以上2つの監視方法を実行している。

遠隔監視センターでの監視する大きな利点は、常時運転状態がわかるために個々の機器の使用環境（燃料組成、大気温度、湿度等）の変化によって生じる“固有のトレンド“をつかむことができる。たとえば、B PT（Blade Pass Temperature：ガスタービンの出力に設置されている16本の温度計）偏差等の値は、負荷上昇・下降等により変化するがその変化傾向の“固有のトレンド”をもって統計的に整理しておきそれぞれから逸脱する程度に着目すると機器の健全性を早期に診断することができ、ユーザーへの事象説明と出力の連続を迅速に実施できる。

図7 海外プラントの遠隔監視状況

図8 ブリアラーム監視

Download service for the GTSJ via 54.70.40.11, 2020/04/05.
-296-
3.2 機器の先進プロテクションシステムの開発と活用
従来のプロテクションシステムは、許容値を超えると停止させるシステムであった。先進プロテクションシステムは、許容値を超える事象の発生を回避するように自動調整するシステムである。

図9 先進プロテクションシステムの1つ「燃焼振動自動調整システム」

3.3 L T S A（Long Term Service Agreement : 長期メンテナンス契約）の導入
従来の予防保全は一般的に次回あるいはその次の点検に重点を置いた内容で進められてきた。これに対してL T S Aは高い信頼性・稼働率の達成を目的として、6〜10年以上の期間にわたって部品の補修・供給や点検スケジュールの立案、技術的支援など、日常の運転管理以外での設備運用・維持にメーカーが直接的に予防保全を行い続けるメンテナンス体制である。

メーカーがメンテナンス側からの視点にて運用状態を把握することにより、プラント固有の潜在リスクを抽出してこれを解決する計画的な対応が可能となる。

(1) 運用時のリスク評価
R M Cから得られる運用のデータと点検時確認する高温部品の劣化状況等のデータからプラント固有のリスクを抽出し打ち合手を立案・検証する。またこれをユーザーに情報として提供する。

(2) 部品供給・補修の取り回し
各プラントの高温部品の劣化状況が把握できており且つ将来の運用状態が予想できるため、コストが最適となる取り回し計画の立案が可能である。
4. あとがき

既設のガスタービンの信頼性を向上させる方法として、“開発機種にて実証された最新要素技術のフィードバック”と“最新の予防保全技術の採用”がある。本論文では、まず前者としてFシリーズガスタービンのタービン動静翼の最新要素技術の適用例を説明し、次に後者として下記の最新の予防保全技術および体制を紹介した。

1）RMCでの監視は、単に制限値にて機器の管理をするのではなく、一歩進んで運用条件による機器毎の特性“固有のトレンド”をメーカーが詳細に把握しユーザーや協力して手先手先の対応を通じて機器の信頼性を確保することが可能になる。

2）開発された先進のプロテクションシステムの活用で、機器に影響を与える異常事態を自動的に回避することが可能となる。

3）LTS A体制では「運用時のリスク評価と打ち手の実施」と「リスクを最小とする最適な高温部品の取り回し計画」の立案にメーカーが参画することによる信頼性向上。

これらは長期運用時の予防保全技術「プラント固有の条件がガスタービンに及ぼす影響を早期に把握し、計画的に先手の対応を実施する」をメーカーとして積極的に参画し進歩させてきたものであり、M501Gガスタービンの実証設備での運用経験、海外のLTS Aプラントの経験およびITの高度化に伴って構築されたものである。

今後も既存機種から新機種への“よい遺伝子”の伝達と新機種から既存機種への最新技術の“フィードバック”という機器の技術改善サイクル、「運用時の問題点の早期発見と計画的な先手の対応、状況確認する運用時の改善サイクル」の両輪を動かすことにより継続的な信頼性向上を推進する。

＜参考文献＞

(2) 有村秋典他、2002、「既存ガスタービンの改良について」、〈社〉日本ガスタービン学会、第30回定期講演会

(3) 野村真澄他、2002、「燃焼振動自動調整システムの開発」、〈社〉日本ガスタービン学会、第30回定期講演会